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Introduction: Advection-Diffusion Equations
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Advection-Diffusion Equations
Let D ⊆ Rd , and consider the continuity equation for a passive scalar
θ(t, x) under the action of a vector field u(t, x) with κ ≥ 0,{

∂tθ + ∇ · (uθ) = κ∆θ in (0,T ) × D,
θ(0, ·) = θ0 in D. (AD)

If D has a boundary: (u − κ∇θ) · n = 0 on (0,T ) × ∂D.

Figure: Action of an alternating shear flow
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Advection-Diffusion Equations
Different viewpoint: follow the particle trajectories, given by the flow map{

dXt = u(t,Xt)dt +
√

2κdBt − n(Xt)dLt ,
X0 = id,

(SDE)

where (Bt)t≥0 is a Brownian motion in Rd , and (Lt)t≥0 is a local time of
the process Xt that only activates when Xt touches the boundary ∂D.

• Solutions to (AD) and (SDE) are related through Feynman-Kac:

θ(t, ·) = E[(Xt)#θ
0].

DiPerna-Lions setting: u ∈ L1(W 1,p) with p > 1, and (∇ · u)− ∈ L1(L∞).

Theorem [DiPerna, Lions (1989)]
For κ = 0, let θ0 ∈ Lq with 1/p + 1/q ≥ 1. Then there exists a unique
distributional solution θ ∈ L∞(Lq).
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Control over the Gradient of θ

κ > 0 yields a control over the gradient of θ:

Theorem [Le Bris, Lions (2008)]
If κ > 0, let p = 2 and θ0 ∈ L2 ∩ L∞. Then there exists a unique
distributional solution θ ∈ L∞(L2 ∩ L∞) ∩ L2(Ḣ1).

For our estimates with κ > 0, we want ∇θ to be controlled in L1(L1).
Consider initial data with finite entropy,

∫
D
θ0 log θ0dx < ∞ ⇒

∫∫
(0,T )×D

|∇θ|dxdt ≲

√
T
κ
.

How to achieve finite entropy?
• Bounded domain: θ0 ∈ Lq, q > 1.
• Unbounded domain: θ0 ∈ L1 ∩ Lq, q > 1 and finite first moments.
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Optimal Transport Distances
Let µ, ν ∈ L1 measures of equal mass, Π(µ, ν) the set of all transport plans
between them, and c : [0,∞) → [0,∞) a nondecreasing cost function.
The optimal transport distance is defined via the minimisation problem

Dc(µ, ν) = inf
π∈Π(µ,ν)

∫∫
D×D

c(|x − y |)dπ(x , y).

• c(z) is a distance: Dc metrizes weak convergence of measures.
• c(z) is concave: the OT problem admits a dual formulation,

Dc(µ, ν) = sup
|ξ(x)−ξ(y)|≤c(|x−y |)

∫
D
ξ(z)d(µ− ν)(z).

We consider a logarithmic cost function,

c(z) = log
(z
δ

+ 1
)

with δ > 0.
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Stability for Distributional Solutions
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Stability in the DiPerna-Lions Setting

In the DiPerna-Lions setting, we find bounds on the the distance between
two distributional solutions to (AD) given by different data.

• u ∈ L1(W 1,p), (∇ · u)− ∈ L1(L∞),
• θ0 ∈ L1 ∩ Lq and finite first moments.

Theorem 1 [NF, Schlichting, Seis]
Let θ1, θ2 ∈ L∞(Lq) ∩ L1(W 1,1) be the unique solutions to (AD) defined by
(u1, κ1, θ

0
1) and (u2, κ2, θ

0
2) respectively. Then we find the following stability

estimate,

sup
t∈(0,T )

Dδ(θ1, θ2)(t) ≲ 1 + Dδ(θ0
1, θ

0
2) +

∥u1 − u2∥L1(Lp)
δ

+ |κ1 − κ2|
δ

,

for every δ > 0.
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Optimality of the Estimate and Zero-Diffusivity Limit
Rate of convergence: smallest δ = δn for which the RHS is finite,

1 Initial data: Dδn(θ0, θ0
n) ∼ 1. Optimal for weak convergence.

2 Vector field: ∥u − un∥L1(Lp) ∼ δn. Optimal if κ = 0.
3 Diffusivity constant: |κ− κn| ∼ δn. Best known rate. Optimal?

t|κ1 − κ2|
√
κ1 + √

κ2
≲ W1(θ1, θ2)(t), θ1, θ2 heat kernels.

The zero-diffusivity limit: let u1 = u2 and θ0
1 = θ0

2,

sup
t∈(0,T )

Dδ(θ1, θ2)(t) ≲ 1 +
|κ1 − κ2|∥∇θ2∥L1(L1)

δ
≲ 1 + |κ1 − κ2|

δ

√
T
κ2
.

• Seis (2018).
In the limit κ → 0, the optimal rate is Dδ(θ, θκ)(t) ≲ 1 +

√
tκ/δ.
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Stability out of the DiPerna-Lions Setting

We prove well-posedness of the Cauchy problem (AD) out of the
DiPerna-Lions setting, see Bouchut, Crippa (2013).

• ∇u = K ∗ ω where ω ∈ L1(L1) and K is a singular integral kernel,
• θ0 ∈ L1 ∩ L∞ mean free.

Theorem 2 [NF, Schlichting, Seis]
The Cauchy problem (AD) has a unique distributional solution with

θ ∈ L∞(L1 ∩ L∞) and ∇θ ∈ L1(L1).

Uniqueness is a byproduct of the estimate: ∀ε > 0, ∃Cε > 0 such that

sup
t∈(0,T )

Dδ(θ, 0)(t) ≲ Dδ(θ0, 0) + ε

(
1 + log ∥u∥Lp,∞

εδ

)
+ Cε,

for all δ > 0.
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Stability for the Implicit Finite Volume Scheme
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Unstructured Meshes
Let D ⊂ Rd be bounded, let ∂D be C1,1, and consider

• {K}K∈T ⊂ D a tessellation with closed, polygonal cells;
• h = max diamK size of the mesh.

Figure: Exterior ball condition and an example of control cell.
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The Implicit Finite Volume Scheme

Let τ > 0 be the time step.
• Initial datum averaged on every cell θ0

K = −
∫

K θ
0dx .

• Discrete normal velocity from control cell K to neighboring L,

un
KL = −

∫ (n+1)τ

nτ
−
∫

K |L
u · nKLdHd−1dt.

Then the finite volume scheme is given by

θn+1
K − θn

K
τ

+
∑
L∼K

|K |L|
|K |

(
un+

KLθ
n+1
K − un−

KLθ
n+1
L + κ

θn+1
K − θn+1

L
dKL

)
= 0.

The approximate solution θτh is defined by

θτh(t, x) = θn
K a.e. (t, x) ∈ [nτ, (n + 1)τ) × K . (FV)
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Stability for the Implicit Finite Volume Scheme
We study the converegence of the approximate solution towards the
distributional solution on the DiPerna-Lions setting:

• u ∈ L1(W 1,p) with p ∈ (1,∞], (∇ · u)− ∈ L1(L∞);
• θ0 ∈ Lq with q ∈ (1,∞] and 1/p + 1/q ≤ 1.

In addition we assume: u ∈ L∞((0,T ) × D).

Theorem 3 [NF, Schlichting]
Let θ ∈ L∞(Lq) ∩ L1(W 1,1) be the unique distributional solutions to (AD)
and θτh the unique approximate solution given by (FV). Then, for τ > 0
small enough, there holds

sup
t∈(0,T )

Dδ(θ, θτh)(t) ≲ 1 + h
δ

+
√
τT∥u∥∞
δ

+
√
τκ

δ
,

for every δ > 0.
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Numerical Diffusion and Optimality

sup
t∈(0,T )

Dδ(θ, θτh)(t) ≲ 1 + h
δ

min
{ 1√

h
,

1√
κ

}
+

√
τ

δ

• Guo, Stynes (1997), Droniou (2002).
Rate of convergence with κ > 0 and smooth vector field: h.

• Schlichting, Seis (2018).
Rate of convergence with κ = 0 in DiPerna-Lions:

√
h.

How do we improve the rate of convergence? BV estimates:

τ
∑

n

∑
K

∑
L∼K

|K |L||θn+1
K − θn+1

L | ≲ min
{ 1√

h
,

1√
κ

}
.

The discretization of D ⊂ Rd generates numerical diffusion that heuristically
corresponds to a second diffusion with coefficient h > 0,

∂tθ + u · ∇θ = (κ+ h)∆θ.
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Ergodicity and Mixing with Random Vector Fields
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Transport by Random Vector Fields

Let κ = 0 and consider the transport of the passive scalar θ(t, x) by a
divergence free vector field u(t, x),{

∂tθ + u · ∇θ = 0 in (0,∞) × D,
θ(0, ·) = θ0 in D. (T)

If D has a boundary, we impose u · n = 0 on (0,∞) × ∂D. Then,
• the total mass of θ(t, ·) is conserved;
• ∥θ(t)∥Lp = ∥θ0∥Lp for all p ∈ [1,∞].

Question: Can we find examples of vector fields u that make

θ(t, ·) ⇀
∫

D
θ0dx WLOG= 0

as t → ∞ in some sense? How fast can the convergence be?
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Random Vector Fields

Let D,D′ ⊂ Rd be bounded, we choose vector fields the form

u = u(x , y) with (x , y) ∈ D × D′.

In D′, define a Brownian motion (Yt)t≥0 of intensity ν > 0,

dYt =
√

2νdBt − n(Yt)dLt , Y0 = id.

The random vector field in (T) is defined by u(x ,Yt), an depends
implicitly on the noise realisation and initial point Y0 ∈ D′.

• We look for examples of vector fields u(·,Yt) that make the passive
scalar θ(t, ·) being exponentially ergodic,

∥Eθ(t)∥L2 → 0 exponentially fast.
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Ergodicity and Annealed Mixing
• We obtain a coupled SDE in D × D′:(

dXt
dYt

)
=
(

u(Xt ,Yt)
0

)
dt +

(
0√
2ν

)
dBt −

(
0

n(Yt)

)
dLt

To study the long-time behaviour of this system there are two perspectives.
1 ODE: random dynamics + Markov process

Pt(x ,A) = P[Xt ∈ A | X0 = x ], A ∈ B(D),

see Bedrossian, Blumenthal, Punshon-Smith (2018, 2019, 2020).
2 PDE: we can use Feynman-Kac to transform the SDE into a PDE{

∂t f + u(x , y) · ∇x f = ν∆y f , in D × D′,
ny · ∇y f = 0, on ∈ D × ∂D′,

(PDE)

where f (t, x , y) = E[(Xt ,Yt)#f 0(x , y)].
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Hypocoercivity and Ergodicity
Let u ∈ C2(D × D′), and f (0, x , y) = θ0(x)ρ(y) with

• lawY0 = ρ ∈ (P ∩ W 1,∞)(D′);
• θ0 mean free, and θ0 ∈ H1(D).

Theorem 4 [NF, Schlichting, Seis]
If ∃γ > 0 such that ∥f (t)∥H1 ≲ e−γt , then ∥Eθ(t)∥L2 ≲ e−γt .

Namely, we found a sufficient condition for exponential ergodicity:

hypocoercivity of L = u(x , y) · ∇x − ν∆y (+ BC), see Villani (2009).

• Example 1: Shear flows with random phases in T2,

ushear(x , y) =
(

sin(x2 + y1)
sin(x1 + y2)

)
, (x , y) ∈ T2 × T2.
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Examples of Ergodicity with a Random Vector Field
• Example 2: Randomly moving vortex in B1 ⊂ R2,

uvortex(x , y) = −e−2πψ(x ,y)

1 − |y |2
∇⊥

x ψ(x , y), (x , y) ∈ B1 × Br ,

where r < 1 and ψ(x , y) is the streamfunction of a point vortex in y .

Theorem 5 [NF, Schlichting, Seis]
Let ν ≫ 1 be sufficiently large, and f be a solution to (PDE).

1 Given the vector field ushear(·,Yt), ∃α > 0 such that

∥f (t)∥H1(T2×T2) ≲ ∥f 0∥H1(T2×T2)e−αt , ∀t ≥ 0.

2 Given the vector field uvortex(·,Yt), ∃β > 0 such that

∥f (t)∥H1
δ
(B1×Br ) ≲ ∥f 0∥H1

δ
(B1×Br )e−βt , ∀t ≥ 0.
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Examples of Ergodicity with a Random Vector Field

0 1 2 3 4 5 6
0

1

2

3

4

5

6

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure: Streamlines of the two examples of vector fields with y = (0, 0.5).
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