Stability Results for Advection-Diffusion Equations with Deterministic and Random Vector Fields

Víctor Navarro Fernández

Institut für Analysis und Numerik Universität Münster

January 15, 2024

ANGEWANDTE

Outline

1 Introduction: Advection-Diffusion Equations

2 Stability for Distributional Solutions

3 Stability for the Implicit Finite Volume Scheme

4 Ergodicity and Mixing with Random Vector Fields

Introduction: Advection-Diffusion Equations

Advection-Diffusion Equations

Let $D \subseteq \mathbb{R}^d$, and consider the continuity equation for a passive scalar $\theta(t, x)$ under the action of a vector field u(t, x) with $\kappa \ge 0$,

$$\begin{cases} \partial_t \theta + \nabla \cdot (u\theta) &= \kappa \Delta \theta \quad \text{in } (0, T) \times \mathsf{D}, \\ \theta(0, \cdot) &= \theta^0 \quad \text{in } \mathsf{D}. \end{cases}$$
 (AD)

If D has a boundary: $(u - \kappa \nabla \theta) \cdot n = 0$ on $(0, T) \times \partial D$.

Figure: Action of an alternating shear flow

Advection-Diffusion Equations

Different viewpoint: follow the particle trajectories, given by the flow map

$$\begin{cases} dX_t = u(t, X_t)dt + \sqrt{2\kappa}dB_t - n(X_t)dL_t, \\ X_0 = \text{id}, \end{cases}$$
(SDE)

where $(B_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d , and $(L_t)_{t\geq 0}$ is a local time of the process X_t that only activates when X_t touches the boundary ∂D .

• Solutions to (AD) and (SDE) are related through Feynman-Kac:

$$\theta(t,\cdot) = \mathbb{E}[(X_t)_{\#}\theta^0].$$

DiPerna-Lions setting: $u \in L^1(W^{1,p})$ with p > 1, and $(\nabla \cdot u)^- \in L^1(L^\infty)$.

Theorem [DiPerna, Lions (1989)]

For $\kappa = 0$, let $\theta^0 \in L^q$ with $1/p + 1/q \ge 1$. Then there exists a unique distributional solution $\theta \in L^{\infty}(L^q)$.

Control over the Gradient of $\boldsymbol{\theta}$

 $\kappa > 0$ yields a control over the gradient of θ :

Theorem [Le Bris, Lions (2008)]

If $\kappa > 0$, let p = 2 and $\theta^0 \in L^2 \cap L^\infty$. Then there exists a unique distributional solution $\theta \in L^\infty(L^2 \cap L^\infty) \cap L^2(\dot{H}^1)$.

For our estimates with $\kappa > 0$, we want $\nabla \theta$ to be controlled in $L^1(L^1)$. Consider initial data with **finite entropy**,

$$\int_{\mathsf{D}} \theta^0 \log \theta^0 dx < \infty \quad \Rightarrow \quad \iint_{(0,T) \times \mathsf{D}} |\nabla \theta| dx dt \lesssim \sqrt{\frac{T}{\kappa}}.$$

How to achieve finite entropy?

- Bounded domain: $\theta^0 \in L^q$, q > 1.
- Unbounded domain: $\theta^0 \in L^1 \cap L^q$, q > 1 and finite first moments.

Optimal Transport Distances

Let $\mu, \nu \in L^1$ measures of equal mass, $\Pi(\mu, \nu)$ the set of all transport plans between them, and $c : [0, \infty) \to [0, \infty)$ a nondecreasing **cost function**. The optimal transport distance is defined via the minimisation problem

$$\mathcal{D}_{c}(\mu,\nu) = \inf_{\pi \in \Pi(\mu,\nu)} \iint_{\mathsf{D} \times \mathsf{D}} c(|x-y|) d\pi(x,y).$$

c(z) is a distance: D_c metrizes weak convergence of measures.
c(z) is concave: the OT problem admits a dual formulation,

$$\mathcal{D}_{\boldsymbol{c}}(\mu,
u) = \sup_{|\xi(x) - \xi(y)| \leq \boldsymbol{c}(|x-y|)} \int_{\mathsf{D}} \xi(z) d(\mu -
u)(z).$$

We consider a logarithmic cost function,

$$c(z) = \log\left(rac{z}{\delta} + 1
ight) \quad ext{with} \quad \delta > 0.$$

Stability for Distributional Solutions

Stability in the DiPerna-Lions Setting

In the DiPerna-Lions setting, we find bounds on the the distance between two distributional solutions to (AD) given by different data.

•
$$u \in L^1(W^{1,p})$$
, $(
abla \cdot u)^- \in L^1(L^\infty)$,

• $\theta^0 \in L^1 \cap L^q$ and finite first moments.

Theorem 1 [NF, Schlichting, Seis]

Let $\theta_1, \theta_2 \in L^{\infty}(L^q) \cap L^1(W^{1,1})$ be the unique solutions to (AD) defined by $(u_1, \kappa_1, \theta_1^0)$ and $(u_2, \kappa_2, \theta_2^0)$ respectively. Then we find the following stability estimate,

$$\sup_{t\in(0,T)}\mathcal{D}_{\delta}(\theta_1,\theta_2)(t)\lesssim 1+\mathcal{D}_{\delta}(\theta_1^0,\theta_2^0)+\frac{\|u_1-u_2\|_{L^1(L^p)}}{\delta}+\frac{|\kappa_1-\kappa_2|}{\delta},$$

for every $\delta > 0$.

Optimality of the Estimate and Zero-Diffusivity Limit

Rate of convergence: smallest $\delta = \delta_n$ for which the RHS is finite,

- **1** Initial data: $\mathcal{D}_{\delta_n}(\theta^0, \theta_n^0) \sim 1$. Optimal for weak convergence.
- **2** Vector field: $||u u_n||_{L^1(L^p)} \sim \delta_n$. Optimal if $\kappa = 0$.
- **3** Diffusivity constant: $|\kappa \kappa_n| \sim \delta_n$. Best known rate. Optimal?

$$rac{t|\kappa_1-\kappa_2|}{\sqrt{\kappa_1}+\sqrt{\kappa_2}}\lesssim W_1(heta_1, heta_2)(t), \quad heta_1, heta_2$$
 heat kernels

The zero-diffusivity limit: let $u_1 = u_2$ and $\theta_1^0 = \theta_2^0$,

$$\sup_{t\in(0,\mathcal{T})}\mathcal{D}_{\delta}(\theta_1,\theta_2)(t)\lesssim 1+\frac{|\kappa_1-\kappa_2|\|\nabla\theta_2\|_{L^1(L^1)}}{\delta}\lesssim 1+\frac{|\kappa_1-\kappa_2|}{\delta}\sqrt{\frac{\mathcal{T}}{\kappa_2}}.$$

• Seis (2018). In the limit $\kappa \to 0$, the optimal rate is $\mathcal{D}_{\delta}(\theta, \theta^{\kappa})(t) \lesssim 1 + \sqrt{t\kappa}/\delta$.

Stability out of the DiPerna-Lions Setting

We prove well-posedness of the Cauchy problem (AD) out of the DiPerna-Lions setting, see Bouchut, Crippa (2013).

- $\nabla u = K * \omega$ where $\omega \in L^1(L^1)$ and K is a singular integral kernel,
- $\theta^0 \in L^1 \cap L^\infty$ mean free.

Theorem 2 [NF, Schlichting, Seis]

The Cauchy problem (AD) has a unique distributional solution with

$$heta \in L^{\infty}(L^1 \cap L^{\infty})$$
 and $abla \theta \in L^1(L^1)$.

Uniqueness is a byproduct of the estimate: $\forall \varepsilon > 0$, $\exists C_{\varepsilon} > 0$ such that

$$\sup_{t\in(0,T)}\mathcal{D}_{\delta}(\theta,0)(t)\lesssim \mathcal{D}_{\delta}(\theta^{0},0)+\varepsilon\left(1+\log\frac{\|u\|_{L^{p,\infty}}}{\varepsilon\delta}\right)+\mathit{C}_{\varepsilon},$$

for all $\delta > 0$.

Stability for the Implicit Finite Volume Scheme

Unstructured Meshes

- Let $\mathsf{D} \subset \mathbb{R}^d$ be bounded, let $\partial \mathsf{D}$ be $C^{1,1}$, and consider
 - $\{K\}_{K\in\mathcal{T}}\subset D$ a tessellation with closed, polygonal cells;
 - $h = \max \operatorname{diam} K$ size of the mesh.

Figure: Exterior ball condition and an example of control cell.

The Implicit Finite Volume Scheme

Let $\tau > 0$ be the time step.

- Initial datum averaged on every cell $\theta_K^0 = \int_K \theta^0 dx$.
- Discrete normal velocity from control cell K to neighboring L,

$$u_{KL}^n = \int_{n\tau}^{(n+1)\tau} f_{K|L} u \cdot n_{KL} dH^{d-1} dt.$$

Then the finite volume scheme is given by

$$\frac{\theta_{K}^{n+1}-\theta_{K}^{n}}{\tau}+\sum_{L\sim K}\frac{|K|L|}{|K|}\left(u_{KL}^{n+}\theta_{K}^{n+1}-u_{KL}^{n-}\theta_{L}^{n+1}+\kappa\frac{\theta_{K}^{n+1}-\theta_{L}^{n+1}}{d_{KL}}\right)=0.$$

The approximate solution $\theta_{\tau h}$ is defined by

$$\theta_{\tau h}(t,x) = \theta_K^n \quad \text{a.e.} \ (t,x) \in [n\tau,(n+1)\tau) \times K.$$
(FV)

Stability for the Implicit Finite Volume Scheme

We study the convergence of the approximate solution towards the distributional solution on the DiPerna-Lions setting:

- $u \in L^1(W^{1,p})$ with $p \in (1,\infty]$, $(\nabla \cdot u)^- \in L^1(L^\infty)$;
- $\theta^0 \in L^q$ with $q \in (1,\infty]$ and $1/p + 1/q \leq 1$.

In addition we assume: $u \in L^{\infty}((0, T) \times D)$.

Theorem 3 [NF, Schlichting]

Let $\theta \in L^{\infty}(L^q) \cap L^1(W^{1,1})$ be the unique distributional solutions to (AD) and $\theta_{\tau h}$ the unique approximate solution given by (FV). Then, for $\tau > 0$ small enough, there holds

$$\sup_{t\in(0,\mathcal{T})}\mathcal{D}_{\delta}(\theta,\theta_{\tau\,h})(t)\lesssim 1+\frac{h}{\delta}+\frac{\sqrt{\tau\,T}\|u\|_{\infty}}{\delta}+\frac{\sqrt{\tau\,\kappa}}{\delta}$$

for every $\delta > 0$.

Numerical Diffusion and Optimality

$$\sup_{t\in(0,\mathcal{T})}\mathcal{D}_{\delta}(\theta,\theta_{\tau h})(t)\lesssim 1+\frac{h}{\delta}\min\left\{\frac{1}{\sqrt{h}},\frac{1}{\sqrt{\kappa}}\right\}+\frac{\sqrt{\tau}}{\delta}$$

- Guo, Stynes (1997), Droniou (2002). Rate of convergence with $\kappa > 0$ and smooth vector field: *h*.
- Schlichting, Seis (2018).

Rate of convergence with $\kappa = 0$ in DiPerna-Lions: \sqrt{h} .

How do we improve the rate of convergence? **BV** estimates:

$$\tau \sum_{n} \sum_{K} \sum_{L \sim K} |K|L| |\theta_{K}^{n+1} - \theta_{L}^{n+1}| \lesssim \min\left\{\frac{1}{\sqrt{h}}, \frac{1}{\sqrt{\kappa}}\right\}.$$

The discretization of $D \subset \mathbb{R}^d$ generates numerical diffusion that heuristically corresponds to a second diffusion with coefficient h > 0,

$$\partial_t \theta + u \cdot \nabla \theta = (\kappa + h) \Delta \theta.$$

Ergodicity and Mixing with Random Vector Fields

Transport by Random Vector Fields

Let $\kappa = 0$ and consider the transport of the passive scalar $\theta(t, x)$ by a divergence free vector field u(t, x),

$$\begin{cases} \partial_t \theta + u \cdot \nabla \theta &= 0 \quad \text{in } (0, \infty) \times \mathsf{D}, \\ \theta(0, \cdot) &= \theta^0 \quad \text{in } \mathsf{D}. \end{cases}$$

If D has a boundary, we impose $u \cdot n = 0$ on $(0, \infty) \times \partial D$. Then,

• the total mass of $\theta(t, \cdot)$ is conserved;

•
$$\|\theta(t)\|_{L^p} = \|\theta^0\|_{L^p}$$
 for all $p \in [1, \infty]$.

Question: Can we find examples of vector fields *u* that make

$$\theta(t,\cdot)
ightarrow \int_{\mathsf{D}} \theta^0 dx \stackrel{\mathsf{WLOG}}{=} 0$$

as $t \to \infty$ in some sense? How fast can the convergence be?

(T)

Random Vector Fields

Let $\mathsf{D},\mathsf{D}'\subset\mathbb{R}^d$ be bounded, we choose vector fields the form

u = u(x, y) with $(x, y) \in \mathsf{D} \times \mathsf{D}'$.

In D', define a Brownian motion $(Y_t)_{t\geq 0}$ of intensity $\nu > 0$,

$$dY_t = \sqrt{2\nu} dB_t - n(Y_t) dL_t, \quad Y_0 = \text{id}.$$

The **random vector field** in (T) is defined by $u(x, Y_t)$, an depends implicitly on the noise realisation and initial point $Y_0 \in D'$.

We look for examples of vector fields u(·, Y_t) that make the passive scalar θ(t, ·) being exponentially ergodic,

 $\|\mathbb{E}\theta(t)\|_{L^2} o 0$ exponentially fast.

Ergodicity and Annealed Mixing

• We obtain a coupled SDE in D × D':

$$\begin{pmatrix} dX_t \\ dY_t \end{pmatrix} = \begin{pmatrix} u(X_t, Y_t) \\ 0 \end{pmatrix} dt + \begin{pmatrix} 0 \\ \sqrt{2\nu} \end{pmatrix} dB_t - \begin{pmatrix} 0 \\ n(Y_t) \end{pmatrix} dL_t$$

To study the long-time behaviour of this system there are two perspectives. **1 ODE**: random dynamics + Markov process

$$P_t(x,A) = \mathbb{P}[X_t \in A \mid X_0 = x], \quad A \in \mathcal{B}(\mathsf{D}),$$

see Bedrossian, Blumenthal, Punshon-Smith (2018, 2019, 2020).

PDE: we can use Feynman-Kac to transform the SDE into a PDE

$$\begin{cases} \partial_t f + u(x, y) \cdot \nabla_x f = \nu \Delta_y f, & \text{in } D \times D', \\ n_y \cdot \nabla_y f = 0, & \text{on } \in D \times \partial D', \end{cases}$$
(PDE)

where $f(t, x, y) = \mathbb{E}[(X_t, Y_t)_{\#} f^0(x, y)].$

Hypocoercivity and Ergodicity

Let $u \in C^2(\mathsf{D} \times \mathsf{D}')$, and $f(0, x, y) = \theta^0(x)\rho(y)$ with

- law $Y_0 =
 ho \in (\mathcal{P} \cap W^{1,\infty})(\mathsf{D}');$
- θ^0 mean free, and $\theta^0 \in H^1(\mathsf{D})$.

Theorem 4 [NF, Schlichting, Seis] If $\exists \gamma > 0$ such that $\|f(t)\|_{H^1} \lesssim e^{-\gamma t}$, then $\|\mathbb{E}\theta(t)\|_{L^2} \lesssim e^{-\gamma t}$.

Namely, we found a sufficient condition for exponential ergodicity:

hypocoercivity of $\mathcal{L} = u(x, y) \cdot \nabla_x - \nu \Delta_y$ (+ BC), see Villani (2009).

• **Example 1**: Shear flows with random phases in \mathbb{T}^2 ,

$$u_{\mathsf{shear}}(x,y) = \left(egin{array}{c} \sin(x_2+y_1) \ \sin(x_1+y_2) \end{array}
ight), \quad (x,y) \in \mathbb{T}^2 imes \mathbb{T}^2.$$

Examples of Ergodicity with a Random Vector Field

• **Example 2**: Randomly moving vortex in $B_1 \subset \mathbb{R}^2$,

$$u_{ ext{vortex}}(x,y) = -rac{e^{-2\pi\psi(x,y)}}{1-|y|^2}
abla_x^\perp \psi(x,y), \quad (x,y) \in B_1 imes B_r,$$

where r < 1 and $\psi(x, y)$ is the streamfunction of a point vortex in y.

Theorem 5 [NF, Schlichting, Seis]

Let $\nu \gg 1$ be sufficiently large, and f be a solution to (PDE).

1 Given the vector field $u_{shear}(\cdot, Y_t)$, $\exists \alpha > 0$ such that

$$\|f(t)\|_{H^1(\mathbb{T}^2 imes\mathbb{T}^2)}\lesssim \|f^0\|_{H^1(\mathbb{T}^2 imes\mathbb{T}^2)}e^{-lpha t},\quad orall t\geq 0.$$

2 Given the vector field $u_{vortex}(\cdot, Y_t)$, $\exists \beta > 0$ such that

$$\|f(t)\|_{H^1_\delta(B_1 imes B_r)}\lesssim \|f^0\|_{H^1_\delta(B_1 imes B_r)}e^{-eta t},\quad \forall t\geq 0.$$

Examples of Ergodicity with a Random Vector Field

Figure: Streamlines of the two examples of vector fields with y = (0, 0.5).

Some Key References

 J. Bedrossian, A. Blumenthal, and S. Punshon-Smith. Lagrangian chaos and scalar advection in stochastic fluid mechanics.

JEMS 24, 6 (2022) 1893–1990.

- 2 A. Blumenthal, M. Coti Zelati, and R. Gvalani. Exponential mixing for random dynamical systems and an example of Pierrehumbert. *Ann. Probab.* 51, 4 (2023) 1559–1601.
- **3** R. J. DiPerna, and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. *Invent. Math.* 98, 3 (1989), 511–547.
- 4 V. Navarro-Fernández, and A. Schlichting. Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients. ESAIM:M2AN, 57 (2023) 2131–2158.
- 5 V. Navarro-Fernández, A. Schlichting and C. Seis. Optimal stability estimates and a new uniqueness result for advection-diffusion equations. *Pure and Applied Analysis*, 4-3 (2022) 571-596.
- (i) A. Schlichting, and C. Seis. Analysis of the implicit upwind finite volume scheme with rough coefficients. *Numer. Math.* 139, 1 (2018), 155–186.
- C. Seis. A quantitative theory for the continuity equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 7 (2017), 1837–1850.
- 8 C. Villani. Hypocoercivity. Mem. Amer. Math. Soc. 202(950):iv+141, 2009.