Stability Results for Advection-Diffusion Equations with Deterministic and Random Vector Fields

Víctor Navarro Fernández

Institut für Analysis und Numerik
Universität Münster

January 15, 2024

Outline

(1) Introduction: Advection-Diffusion Equations
(2) Stability for Distributional Solutions
(3) Stability for the Implicit Finite Volume Scheme
(4) Ergodicity and Mixing with Random Vector Fields

Introduction: Advection-Diffusion Equations

Advection-Diffusion Equations

Let $\mathrm{D} \subseteq \mathbb{R}^{d}$, and consider the continuity equation for a passive scalar $\theta(t, x)$ under the action of a vector field $u(t, x)$ with $\kappa \geq 0$,

$$
\left\{\begin{array}{rlrl}
\partial_{t} \theta+\nabla \cdot(u \theta) & =\kappa \Delta \theta & \text { in }(0, T) \times \mathrm{D}, \\
\theta(0, \cdot) & =\theta^{0} \quad \text { in } \mathrm{D} .
\end{array}\right.
$$

If D has a boundary: $(u-\kappa \nabla \theta) \cdot n=0$ on $(0, T) \times \partial \mathrm{D}$.

Figure: Action of an alternating shear flow

Advection-Diffusion Equations

Different viewpoint: follow the particle trajectories, given by the flow map

$$
\left\{\begin{align*}
d X_{t} & =u\left(t, X_{t}\right) d t+\sqrt{2 \kappa} d B_{t}-n\left(X_{t}\right) d L_{t} \tag{SDE}\\
X_{0} & =\text { id }
\end{align*}\right.
$$

where $\left(B_{t}\right)_{t \geq 0}$ is a Brownian motion in \mathbb{R}^{d}, and $\left(L_{t}\right)_{t \geq 0}$ is a local time of the process X_{t} that only activates when X_{t} touches the boundary $\partial \mathrm{D}$.

- Solutions to (AD) and (SDE) are related through Feynman-Kac:

$$
\theta(t, \cdot)=\mathbb{E}\left[\left(X_{t}\right)_{\#} \theta^{0}\right]
$$

DiPerna-Lions setting: $u \in L^{1}\left(W^{1, p}\right)$ with $p>1$, and $(\nabla \cdot u)^{-} \in L^{1}\left(L^{\infty}\right)$.

Theorem [DiPerna, Lions (1989)]

For $\kappa=0$, let $\theta^{0} \in L^{q}$ with $1 / p+1 / q \geq 1$. Then there exists a unique distributional solution $\theta \in L^{\infty}\left(L^{q}\right)$.

Control over the Gradient of θ

$\kappa>0$ yields a control over the gradient of θ :

Theorem [Le Bris, Lions (2008)]

If $\kappa>0$, let $p=2$ and $\theta^{0} \in L^{2} \cap L^{\infty}$. Then there exists a unique distributional solution $\theta \in L^{\infty}\left(L^{2} \cap L^{\infty}\right) \cap L^{2}\left(\dot{H}^{1}\right)$.

For our estimates with $\kappa>0$, we want $\nabla \theta$ to be controlled in $L^{1}\left(L^{1}\right)$. Consider initial data with finite entropy,

$$
\int_{D} \theta^{0} \log \theta^{0} d x<\infty \Rightarrow \iint_{(0, T) \times \mathrm{D}}|\nabla \theta| d x d t \lesssim \sqrt{\frac{T}{\kappa}}
$$

How to achieve finite entropy?

- Bounded domain: $\theta^{0} \in L^{q}, q>1$.
- Unbounded domain: $\theta^{0} \in L^{1} \cap L^{q}, q>1$ and finite first moments.

Optimal Transport Distances

Let $\mu, \nu \in L^{1}$ measures of equal mass, $\Pi(\mu, \nu)$ the set of all transport plans between them, and $c:[0, \infty) \rightarrow[0, \infty)$ a nondecreasing cost function. The optimal transport distance is defined via the minimisation problem

$$
\mathcal{D}_{c}(\mu, \nu)=\inf _{\pi \in \Pi(\mu, \nu)} \iint_{\mathrm{D} \times \mathrm{D}} c(|x-y|) d \pi(x, y) .
$$

- $c(z)$ is a distance: \mathcal{D}_{c} metrizes weak convergence of measures.
- $c(z)$ is concave: the OT problem admits a dual formulation,

$$
\mathcal{D}_{c}(\mu, \nu)=\sup _{|\xi(x)-\xi(y)| \leq c(|x-y|)} \int_{\mathrm{D}} \xi(z) d(\mu-\nu)(z) .
$$

We consider a logarithmic cost function,

$$
c(z)=\log \left(\frac{z}{\delta}+1\right) \quad \text { with } \quad \delta>0
$$

Stability for Distributional Solutions

Stability in the DiPerna-Lions Setting

In the DiPerna-Lions setting, we find bounds on the the distance between two distributional solutions to (AD) given by different data.

- $u \in L^{1}\left(W^{1, p}\right),(\nabla \cdot u)^{-} \in L^{1}\left(L^{\infty}\right)$,
- $\theta^{0} \in L^{1} \cap L^{q}$ and finite first moments.

Theorem 1 [NF, Schlichting, Seis]

Let $\theta_{1}, \theta_{2} \in L^{\infty}\left(L^{q}\right) \cap L^{1}\left(W^{1,1}\right)$ be the unique solutions to (AD) defined by $\left(u_{1}, \kappa_{1}, \theta_{1}^{0}\right)$ and ($u_{2}, \kappa_{2}, \theta_{2}^{0}$) respectively. Then we find the following stability estimate,

$$
\sup _{t \in(0, T)} \mathcal{D}_{\delta}\left(\theta_{1}, \theta_{2}\right)(t) \lesssim 1+\mathcal{D}_{\delta}\left(\theta_{1}^{0}, \theta_{2}^{0}\right)+\frac{\left\|u_{1}-u_{2}\right\|_{L^{1}\left(L^{\rho}\right)}}{\delta}+\frac{\left|\kappa_{1}-\kappa_{2}\right|}{\delta}
$$

for every $\delta>0$.

Optimality of the Estimate and Zero-Diffusivity Limit

Rate of convergence: smallest $\delta=\delta_{n}$ for which the RHS is finite,
(1) Initial data: $\mathcal{D}_{\delta_{n}}\left(\theta^{0}, \theta_{n}^{0}\right) \sim 1$. Optimal for weak convergence.
(2) Vector field: $\left\|u-u_{n}\right\|_{L^{1}\left(L^{p}\right)} \sim \delta_{n}$. Optimal if $\kappa=0$.
(3) Diffusivity constant: $\left|\kappa-\kappa_{n}\right| \sim \delta_{n}$. Best known rate. Optimal?

$$
\frac{t\left|\kappa_{1}-\kappa_{2}\right|}{\sqrt{\kappa_{1}}+\sqrt{\kappa_{2}}} \lesssim W_{1}\left(\theta_{1}, \theta_{2}\right)(t), \quad \theta_{1}, \theta_{2} \text { heat kernels. }
$$

The zero-diffusivity limit: let $u_{1}=u_{2}$ and $\theta_{1}^{0}=\theta_{2}^{0}$,

$$
\sup _{t \in(0, T)} \mathcal{D}_{\delta}\left(\theta_{1}, \theta_{2}\right)(t) \lesssim 1+\frac{\left|\kappa_{1}-\kappa_{2}\right|\left\|\nabla \theta_{2}\right\|_{L^{1}\left(L^{1}\right)}}{\delta} \lesssim 1+\frac{\left|\kappa_{1}-\kappa_{2}\right|}{\delta} \sqrt{\frac{T}{\kappa_{2}}}
$$

- Seis (2018).

In the limit $\kappa \rightarrow 0$, the optimal rate is $\mathcal{D}_{\delta}\left(\theta, \theta^{\kappa}\right)(t) \lesssim 1+\sqrt{t \kappa} / \delta$.

Stability out of the DiPerna-Lions Setting

We prove well-posedness of the Cauchy problem (AD) out of the DiPerna-Lions setting, see Bouchut, Crippa (2013).

- $\nabla u=K * \omega$ where $\omega \in L^{1}\left(L^{1}\right)$ and K is a singular integral kernel,
- $\theta^{0} \in L^{1} \cap L^{\infty}$ mean free.

Theorem 2 [NF, Schlichting, Seis]
The Cauchy problem (AD) has a unique distributional solution with

$$
\theta \in L^{\infty}\left(L^{1} \cap L^{\infty}\right) \quad \text { and } \quad \nabla \theta \in L^{1}\left(L^{1}\right) .
$$

Uniqueness is a byproduct of the estimate: $\forall \varepsilon>0, \exists C_{\varepsilon}>0$ such that

$$
\sup _{t \in(0, T)} \mathcal{D}_{\delta}(\theta, 0)(t) \lesssim \mathcal{D}_{\delta}\left(\theta^{0}, 0\right)+\varepsilon\left(1+\log \frac{\|u\|_{L^{p, \infty}}}{\varepsilon \delta}\right)+C_{\varepsilon}
$$

for all $\delta>0$.

Stability for the Implicit Finite Volume Scheme

Unstructured Meshes

Let $\mathrm{D} \subset \mathbb{R}^{d}$ be bounded, let $\partial \mathrm{D}$ be $C^{1,1}$, and consider

- $\{K\}_{K \in \mathcal{T}} \subset \mathrm{D}$ a tessellation with closed, polygonal cells;
- $h=\max \operatorname{diam} K$ size of the mesh.

Figure: Exterior ball condition and an example of control cell.

The Implicit Finite Volume Scheme

Let $\tau>0$ be the time step.

- Initial datum averaged on every cell $\theta_{K}^{0}=f_{K} \theta^{0} d x$.
- Discrete normal velocity from control cell K to neighboring L,

$$
u_{K L}^{n}=f_{n \tau}^{(n+1) \tau} f_{K \mid L} u \cdot n_{K L} d H^{d-1} d t
$$

Then the finite volume scheme is given by

$$
\frac{\theta_{K}^{n+1}-\theta_{K}^{n}}{\tau}+\sum_{L \sim K} \frac{|K| L \mid}{|K|}\left(u_{K L}^{n+} \theta_{K}^{n+1}-u_{K L}^{n-} \theta_{L}^{n+1}+\kappa \frac{\theta_{K}^{n+1}-\theta_{L}^{n+1}}{d_{K L}}\right)=0
$$

The approximate solution $\theta_{\tau h}$ is defined by

$$
\begin{equation*}
\theta_{\tau h}(t, x)=\theta_{K}^{n} \quad \text { a.e. }(t, x) \in[n \tau,(n+1) \tau) \times K \tag{FV}
\end{equation*}
$$

Stability for the Implicit Finite Volume Scheme

We study the converegence of the approximate solution towards the distributional solution on the DiPerna-Lions setting:

- $u \in L^{1}\left(W^{1, p}\right)$ with $p \in(1, \infty],(\nabla \cdot u)^{-} \in L^{1}\left(L^{\infty}\right)$;
- $\theta^{0} \in L^{q}$ with $q \in(1, \infty]$ and $1 / p+1 / q \leq 1$. In addition we assume: $u \in L^{\infty}((0, T) \times D)$.

Theorem 3 [NF, Schlichting]

Let $\theta \in L^{\infty}\left(L^{q}\right) \cap L^{1}\left(W^{1,1}\right)$ be the unique distributional solutions to (AD) and $\theta_{\tau h}$ the unique approximate solution given by (FV). Then, for $\tau>0$ small enough, there holds

$$
\sup _{t \in(0, T)} \mathcal{D}_{\delta}\left(\theta, \theta_{\tau h}\right)(t) \lesssim 1+\frac{h}{\delta}+\frac{\sqrt{\tau T}\|u\|_{\infty}}{\delta}+\frac{\sqrt{\tau \kappa}}{\delta}
$$

for every $\delta>0$.

Numerical Diffusion and Optimality

$$
\sup _{t \in(0, T)} \mathcal{D}_{\delta}\left(\theta, \theta_{\tau h}\right)(t) \lesssim 1+\frac{h}{\delta} \min \left\{\frac{1}{\sqrt{h}}, \frac{1}{\sqrt{\kappa}}\right\}+\frac{\sqrt{\tau}}{\delta}
$$

- Guo, Stynes (1997), Droniou (2002).

Rate of convergence with $\kappa>0$ and smooth vector field: h.

- Schlichting, Seis (2018).

Rate of convergence with $\kappa=0$ in DiPerna-Lions: \sqrt{h}.
How do we improve the rate of convergence? BV estimates:

$$
\tau \sum_{n} \sum_{K} \sum_{L \sim K}|K| L| | \theta_{K}^{n+1}-\theta_{L}^{n+1} \left\lvert\, \lesssim \min \left\{\frac{1}{\sqrt{h}}, \frac{1}{\sqrt{\kappa}}\right\}\right.
$$

The discretization of $\mathrm{D} \subset \mathbb{R}^{d}$ generates numerical diffusion that heuristically corresponds to a second diffusion with coefficient $h>0$,

$$
\partial_{t} \theta+u \cdot \nabla \theta=(\kappa+h) \Delta \theta
$$

Ergodicity and Mixing with Random Vector Fields

Transport by Random Vector Fields

Let $\kappa=0$ and consider the transport of the passive scalar $\theta(t, x)$ by a divergence free vector field $u(t, x)$,

$$
\left\{\begin{array}{rlrl}
\partial_{t} \theta+u \cdot \nabla \theta & =0 & \text { in }(0, \infty) \times \mathrm{D} \tag{T}\\
\theta(0, \cdot) & =\theta^{0} \quad \text { in } \mathrm{D}
\end{array}\right.
$$

If D has a boundary, we impose $u \cdot n=0$ on $(0, \infty) \times \partial \mathrm{D}$. Then,

- the total mass of $\theta(t, \cdot)$ is conserved;
- $\|\theta(t)\|_{L^{p}}=\left\|\theta^{0}\right\|_{L^{p}}$ for all $p \in[1, \infty]$.

Question: Can we find examples of vector fields u that make

$$
\theta(t, \cdot) \rightharpoonup \int_{\mathrm{D}} \theta^{0} d x \stackrel{\text { FLOG }}{=} 0
$$

as $t \rightarrow \infty$ in some sense? How fast can the convergence be?

Random Vector Fields

Let $\mathrm{D}, \mathrm{D}^{\prime} \subset \mathbb{R}^{d}$ be bounded, we choose vector fields the form

$$
u=u(x, y) \quad \text { with }(x, y) \in \mathrm{D} \times \mathrm{D}^{\prime}
$$

In D^{\prime}, define a Brownian motion $\left(Y_{t}\right)_{t \geq 0}$ of intensity $\nu>0$,

$$
d Y_{t}=\sqrt{2 \nu} d B_{t}-n\left(Y_{t}\right) d L_{t}, \quad Y_{0}=\text { id }
$$

The random vector field in (T) is defined by $u\left(x, Y_{t}\right)$, an depends implicitly on the noise realisation and initial point $Y_{0} \in \mathrm{D}^{\prime}$.

- We look for examples of vector fields $u\left(\cdot, Y_{t}\right)$ that make the passive scalar $\theta(t, \cdot)$ being exponentially ergodic,

$$
\|\mathbb{E} \theta(t)\|_{L^{2}} \rightarrow 0 \quad \text { exponentially fast. }
$$

Ergodicity and Annealed Mixing

- We obtain a coupled SDE in $\mathrm{D} \times \mathrm{D}^{\prime}$:

$$
\binom{d X_{t}}{d Y_{t}}=\binom{u\left(X_{t}, Y_{t}\right)}{0} d t+\binom{0}{\sqrt{2 \nu}} d B_{t}-\binom{0}{n\left(Y_{t}\right)} d L_{t}
$$

To study the long-time behaviour of this system there are two perspectives.
(1) ODE: random dynamics + Markov process

$$
P_{t}(x, A)=\mathbb{P}\left[X_{t} \in A \mid X_{0}=x\right], \quad A \in \mathcal{B}(\mathrm{D})
$$

see Bedrossian, Blumenthal, Punshon-Smith (2018, 2019, 2020).
(2) PDE: we can use Feynman-Kac to transform the SDE into a PDE

$$
\left\{\begin{align*}
\partial_{t} f+u(x, y) \cdot \nabla_{x} f & =\nu \Delta_{y} f, & & \text { in } \mathrm{D} \times \mathrm{D}^{\prime} \tag{PDE}\\
n_{y} \cdot \nabla_{y} f & =0, & & \text { on } \in \mathrm{D} \times \partial \mathrm{D}^{\prime}
\end{align*}\right.
$$

where $f(t, x, y)=\mathbb{E}\left[\left(X_{t}, Y_{t}\right)_{\#} f^{0}(x, y)\right]$.

Hypocoercivity and Ergodicity

Let $u \in C^{2}\left(\mathrm{D} \times \mathrm{D}^{\prime}\right)$, and $f(0, x, y)=\theta^{0}(x) \rho(y)$ with

- law $Y_{0}=\rho \in\left(\mathcal{P} \cap W^{1, \infty}\right)\left(\mathrm{D}^{\prime}\right)$;
- θ^{0} mean free, and $\theta^{0} \in H^{1}(\mathrm{D})$.

Theorem 4 [NF, Schlichting, Seis]

If $\exists \gamma>0$ such that $\|f(t)\|_{H^{1}} \lesssim e^{-\gamma t}$, then $\|\mathbb{E} \theta(t)\|_{L^{2}} \lesssim e^{-\gamma t}$.
Namely, we found a sufficient condition for exponential ergodicity: hypocoercivity of $\mathcal{L}=u(x, y) \cdot \nabla_{x}-\nu \Delta_{y}(+\mathrm{BC})$, see Villani (2009).

- Example 1: Shear flows with random phases in \mathbb{T}^{2},

$$
u_{\text {shear }}(x, y)=\binom{\sin \left(x_{2}+y_{1}\right)}{\sin \left(x_{1}+y_{2}\right)}, \quad(x, y) \in \mathbb{T}^{2} \times \mathbb{T}^{2}
$$

Examples of Ergodicity with a Random Vector Field

- Example 2: Randomly moving vortex in $B_{1} \subset \mathbb{R}^{2}$,

$$
u_{\text {vortex }}(x, y)=-\frac{e^{-2 \pi \psi(x, y)}}{1-|y|^{2}} \nabla_{x}^{\perp} \psi(x, y), \quad(x, y) \in B_{1} \times B_{r},
$$

where $r<1$ and $\psi(x, y)$ is the streamfunction of a point vortex in y.

Theorem 5 [NF, Schlichting, Seis]

Let $\nu \gg 1$ be sufficiently large, and f be a solution to (PDE).
(1) Given the vector field $u_{\text {shear }}\left(\cdot, Y_{t}\right), \exists \alpha>0$ such that

$$
\|f(t)\|_{H^{1}\left(\mathbb{T}^{2} \times \mathbb{T}^{2}\right)} \lesssim\left\|f^{0}\right\|_{H^{1}\left(\mathbb{T}^{2} \times \mathbb{T}^{2}\right)} e^{-\alpha t}, \quad \forall t \geq 0
$$

(2) Given the vector field $u_{\text {vortex }}\left(\cdot, Y_{t}\right), \exists \beta>0$ such that

$$
\|f(t)\|_{H_{\delta}^{1}\left(B_{1} \times B_{r}\right)} \lesssim\left\|f^{0}\right\|_{H_{\delta}^{1}\left(B_{1} \times B_{r}\right)} e^{-\beta t}, \quad \forall t \geq 0
$$

Examples of Ergodicity with a Random Vector Field

Figure: Streamlines of the two examples of vector fields with $y=(0,0.5)$.

Some Key References

(1) J. Bedrossian, A. Blumenthal, and S. Punshon-Smith. Lagrangian chaos and scalar advection in stochastic fluid mechanics.
JEMS 24, 6 (2022) 1893-1990.
(2) A. Blumenthal, M. Coti Zelati, and R. Gvalani. Exponential mixing for random dynamical systems and an example of Pierrehumbert.
Ann. Probab. 51, 4 (2023) 1559-1601.
3 R. J. DiPerna, and P.-L. Lions. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 3 (1989), 511-547.
(4) V. Navarro-Fernández, and A. Schlichting. Error estimates for a finite volume scheme for advection-diffusion equations with rough coefficients. ESAIM:M2AN, 57 (2023) 2131-2158.
(5) V. Navarro-Fernández, A. Schlichting and C. Seis. Optimal stability estimates and a new uniqueness result for advection-diffusion equations.
Pure and Applied Analysis, 4-3 (2022) 571-596.
6 A. Schlichting, and C. Seis. Analysis of the implicit upwind finite volume scheme with rough coefficients. Numer. Math. 139, 1 (2018), 155-186.
7 C. Seis. A quantitative theory for the continuity equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 7 (2017), 1837-1850.
8 C. Villani. Hypocoercivity. Mem. Amer. Math. Soc. 202(950):iv+141, 2009.

