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Advection-Diffusion Equations

Let D C RY, and consider the continuity equation for a passive scalar
0(t, x) under the action of a vector field u(t, x) with x > 0,

{ate+v-(u9) = kAO in(0,T)xD, (AD)

0(0,-) = 6° inD.
If D has a boundary: (v —xV6)-n=0 on (0,T) x dD.

I VAA

Figure: Action of an alternating shear flow
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Advection-Diffusion Equations

Different viewpoint: follow the particle trajectories, given by the flow map

{ dX; = u(t,X;)dt +v2kdB; — n(X;)dL:, (SDE)

Xo = ld,

where (B;):>0 is a Brownian motion in RY, and (L;)s>0 is a local time of
the process X; that only activates when X; touches the boundary 9D.

e Solutions to (AD) and (SDE) are related through Feynman-Kac:
0(t,) = E[(Xe)£0°]-
DiPerna-Lions setting: v € LY(W'P) with p > 1, and (V - u)~ € L}(L>).

Theorem [DiPerna, Lions (1989)]

For k =0, let #° € L9 with 1/p +1/q > 1. Then there exists a unique
distributional solution 6§ € L>°(L9).
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Control over the Gradient of 0

k > 0 yields a control over the gradient of 6:

Theorem [Le Bris, Lions (2008)]

If Kk >0, let p=2and 8% € [2NL>®. Then th.ere exists a unique
distributional solution 6 € L%°(L? N L>®) N L2(HY).

For our estimates with x > 0, we want V6 to be controlled in L*(L!).
Consider initial data with finite entropy,

/90 log 00dx < 00 = // V0ldxdt < 1.
D (0,T)xD K

How to achieve finite entropy?
* Bounded domain: §° € L9, g > 1.
* Unbounded domain: #° ¢ [ N L9, g > 1 and finite first moments.
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Optimal Transport Distances

Let p1, v € L' measures of equal mass, M(x,v) the set of all transport plans
between them, and ¢ : [0,00) — [0, 00) a nondecreasing cost function.
The optimal transport distance is defined via the minimisation problem

De(p,v) = _inf // c(|x = yl)dm(x, y).
meN(p,v) DxD

® ¢(z) is a distance: D, metrizes weak convergence of measures.

® ¢(z) is concave: the OT problem admits a dual formulation,

De(mr)= s [ (@) )(a).
[€(x)—€(y)I<c(|x—yl]) VD

We consider a logarithmic cost function,

c(z) = log <§ + 1> with ¢ > 0.
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Stability for Distributional Solutions
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Stability in the DiPerna-Lions Setting

In the DiPerna-Lions setting, we find bounds on the the distance between
two distributional solutions to (AD) given by different data.

e uc [Y(WhP), (V- -u)~ € L}(L>),
e 90 ¢ [1N L9 and finite first moments.

Theorem 1 [NF, Schlichting, Seis]

Let 1,605 € L°(L9) N LY(W?L1) be the unique solutions to (AD) defined by
(u1, k1, 69) and (u, K2, 09) respectively. Then we find the following stability
estimate,

sup Ds(0h, 02)(t) < 1+ Dy(00,69) + 11~ 2l | Jra —rl
te(0,T) 5 s

9

for every 6 > 0.
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Optimality of the Estimate and Zero-Diffusivity Limit

Rate of convergence: smallest § = ¢, for which the RHS is finite,
@ Initial data: Ds, (0°,609) ~ 1. Optimal for weak convergence.
@ Vector field: |[u — upl|p1(1p) ~ 0. Optimal if x = 0.
© Diffusivity constant: |k — kp| ~ 0,. Best known rate. Optimal?

t|/€1—1€2‘
———— S WA(61,02)(t), 01,02 heat kernels.
VEL+ R ™ 1(01,02)(t), 1, U2 heat kernels

The zero-diffusivity limit: let v; = u> and 9(1) = 08,

AN B =
sup Ds(61,02)(2) 5 1+ 2211 2”“<“>51+lr~1ﬁzl\f
te(0,T) 5 5 s

® Seis (2018).
In the limit k — 0, the optimal rate is Ds(60,0")(t) < 1+ Vtk/J.
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Stability out of the DiPerna-Lions Setting

We prove well-posedness of the Cauchy problem (AD) out of the
DiPerna-Lions setting, see Bouchut, Crippa (2013).

® Vu= K xw where w € L}(L!) and K is a singular integral kernel,
e 90 ¢ [1NL> mean free.

Theorem 2 [NF, Schlichting, Seis]
The Cauchy problem (AD) has a unique distributional solution with

0 cL®(*NL>®) and VO e L}(LY).

Uniqueness is a byproduct of the estimate: Ve > 0, 3C. > 0 such that

sup Ds(0,0)(t) < Ds(6°,0) + ¢ (1 1 log ””””’*) tC,
te(0,T) €

for all 6 > 0.
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Stability for the Implicit Finite Volume Scheme

V. Navarro Fernandez (Uni Miinster) Disputation



Unstructured Meshes

Let D ¢ R? be bounded, let D be C!, and consider
® {K}ker C D a tessellation with closed, polygonal cells;
® h = maxdiamK size of the mesh.

Figure: Exterior ball condition and an example of control cell.
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The Implicit Finite Volume Scheme

Let 7 > 0 be the time step.
e |nitial datum averaged on every cell 89 = fx 6%dx.

® Discrete normal velocity from control cell K to neighboring L,

(n+1)7
Ukt :][ ][ u- ngdHY tdt.
nt K|L

Then the finite volume scheme is given by

9;’(+1 B 9?( |K‘L‘ n+on+1 n—pnn+1 eln(_'_l B 92+1
f‘i‘LNZKW UKLHK _UKLQL +/€T =0.

The approximate solution 6., is defined by

O:n(t,x) =0k ae. (t,x) € [nr,(n+1)7)x K. (FV)
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Stability for the Implicit Finite Volume Scheme

We study the converegence of the approximate solution towards the
distributional solution on the DiPerna-Lions setting:

® uc [Y(WP) with p € (1,00], (V- u)~ € LY(L®);
® 90 ¢ L9 with g€ (1,00] and 1/p+1/q < 1.
In addition we assume: u € L*°((0, T) x D).

Theorem 3 [NF, Schlichting]

Let 6 € L>°(L9) N LY(W?1) be the unique distributional solutions to (AD)
and 0., the unique approximate solution given by (FV). Then, for 7 > 0
small enough, there holds

sup D§(9 HTh)(t) <1 A= + v ||u||00 vV T
te(0,T) 5 5

)

for every 6 > 0.
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Numerical Diffusion and Optimality

sup Ds(0,0,:5)(t) S 1+ — h mm{ VT
te(0,T)

St

® Guo, Stynes (1997), Droniou (2002).
Rate of convergence with x > 0 and smooth vector field: h.

® Schlichting, Seis (2018).
Rate of convergence with x = 0 in DiPerna-Lions: v/h.

How do we improve the rate of convergence? BV estimates:

T N IKIL|eET - 9"+1|<m|n{f \lf}

n K L~K

The discretization of D C RY generates numerical diffusion that heuristically
corresponds to a second diffusion with coefficient h > 0,

0t + u- VO = (k+ h)AS.
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Ergodicity and Mixing with Random Vector Fields
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Transport by Random Vector Fields

Let k = 0 and consider the transport of the passive scalar 0(t, x) by a
divergence free vector field u(t, x),

6(0,-) 6° in D.

{8t0+u-V0 = 0 in(0,00) x D, M

If D has a boundary, we impose u-n =0 on (0,00) x OD. Then,
® the total mass of 6(t,-) is conserved;
o 6(t)]leo = [16°]|1» for all p € [1, 00].

Question: Can we find examples of vector fields v that make

o(t, ) A/ 0%dx V2% 0
D

as t — oo in some sense? How fast can the convergence be?
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Random Vector Fields

Let D,D’ C R? be bounded, we choose vector fields the form
u=u(x,y) with (x,y) €D x D"
In D’, define a Brownian motion (Y;):>o of intensity v > 0,
dY: = V2vdB; — n(Yy)dLy, Yo = id.

The random vector field in (T) is defined by u(x, Y;), an depends
implicitly on the noise realisation and initial point Yy € D'.

® We look for examples of vector fields u(-, Y;) that make the passive
scalar 6(t,-) being exponentially ergodic,

IIEO(t)||;2 — 0 exponentially fast.
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Ergodicity and Annealed Mixing
® We obtain a coupled SDE in D x D’:

dXt UXt,Yt 0 0
(D)= (057 Yo (5 Jar (5 )

To study the long-time behaviour of this system there are two perspectives.

@ ODE: random dynamics + Markov process
Pi(x,A) =P[X; € A| Xo =x], A€ B(D),

see Bedrossian, Blumenthal, Punshon-Smith (2018, 2019, 2020).
® PDE: we can use Feynman-Kac to transform the SDE into a PDE

. = i /
{ Oef + u(x, y) - Vyf vA,f, inDxD, (PDE)

n,-V,f =0, on € D xaD’,

where f(t,x,y) = E[(Xt, Yt)#fO(X,Y)]-
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Hypocoercivity and Ergodicity

Let u € C?(D x D'), and (0, x,y) = 8°(x)p(y) with
® lawYy = p € (P N W) (D);

® 9% mean free, and §° € H'(D).

Theorem 4 [NF, Schlichting, Seis]
If 3y > 0 such that ||f(t)[|g: < e, then ||EO(t)]| 2 S et J

Namely, we found a sufficient condition for exponential ergodicity:
hypocoercivity of £ = u(x,y) - Vi —vA, (+ BC), see Villani (2009).

e Example 1: Shear flows with random phases in T?,

sin(xo +
Ushear(Xa)/) = ( sinExj +§3 ) , (X,y) e T? x T?.
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Examples of Ergodicity with a Random Vector Field
e Example 2: Randomly moving vortex in B; C R?,
e—2mP(xy)
1—|yf?

where r < 1 and ¢(x, y) is the streamfunction of a point vortex in y.

Uvortex(Xa)/) = - Viw(x’)/)a (X,Y) € B1 x By,

Theorem 5 [NF, Schlichting, Seis]
Let v > 1 be sufficiently large, and f be a solution to (PDE).
@ Given the vector field ughear(+, Yt), o > 0 such that

IF (D)l rexrey S 101 p(rexm2ye®f, Vi >0.

@® Given the vector field tyortex(-, Yt), 38 > 0 such that

IF () hyeixB,) S |‘f0”H§(leB,)e_ﬁtv vVt > 0.
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Examples of Ergodicity with a Random Vector Field
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Figure: Streamlines of the two examples of vector fields with y =
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