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1. Introduction

In this thesis we address stability results for the transport and advection-diffusion
equations of passive scalars driven by deterministic and random vector fields. The study
of the dynamics of passive tracers such as temperature, solute concentration, dye or
salinity is a topic of great interest to the mathematics and physics community. The
transport and advection-diffusion equations describe the evolution of a passive scalar
under the action a vector field together with the effect of molecular friction that produces
diffusion. These equations model processes that can be found in many different areas,
from financial mathematics to the natural sciences such as drift-diffusion processes in
semiconductor physics, heat transmission through a fluid layer, turbulence or mixing by
stirring on industrials applications.

All the results here presented revolve around the following equation,

∂tθ + ∇ · (uθ) = κ∆θ,

where θ denotes the passive scalar, u the vector field and κ ≥ 0 the diffusion coefficient.
We call this the transport equation if there is no diffusion, i.e. when κ = 0, and the
advection-diffusion equation in case κ > 0. In the literature it can be found as well under
somewhat different names, e.g. Fokker–Planck or drift-diffusion equation.

Ladyženskaya’s classical theory of parabolic equations from the 50s–60s [57, 58] already
yields well-posedness for the transport and advection-diffusion equations with smooth
coefficients. Since then, many interesting results concerning existence, uniqueness and
long-time dynamics have been addressed by the community. The interest has increased
since the 80s in questions related to lower regularity assumptions for the vector fields, thus
in order to obtain well-posedness for these, new concepts and definitions of what to be a
solution means were needed. The notion of distributional, renormalized or Lagrangian
solutions were announced for this reason [3, 31, 37, 59], and with new definitions, new
doors were opened and more questions were posed.

Even with the simplicity given by the linear structure of the equation, and even taking
into account the regularizing effect of the diffusion in case κ > 0, it has been recently
discovered that there are certain vector fields whose regularity is not far from regularities
where well-posedness is known, for which there is non uniqueness [69, 70]. Indeed, by
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Chapter 1. Introduction

means of the method of convex integration, one can construct solutions to the transport
and advection-diffusion equations that are trivial everywhere in the domain initially and
after some time they stop being trivial.

In this thesis new results are derived regarding stability and mixing estimates for
transport and advection-diffusion equations, first for low regularity deterministic vector
fields, and second for Lipschitz but random vector fields. We will now give a more detailed
overview of the contents included in each chapter of this thesis.

Chapter 2 contains preliminary results which are required for a full understanding
of the subsequent chapters. First of all we give a review on well-posedness theory and
energy estimates for transport and advection-diffusion equations. Then we introduce
some special distances in the space of densities that come from the optimal transport
problem and measure convergence in the weak topology. Next we define the notion of
Markov process, Markov transition kernels, which are important for the cases in which we
study the evolution of passive scalar under the action of stochastic vector fields. We also
define the concept of invariant measure and give some classical existence and uniqueness
results. Finally we address the mixing problem, since this will be the central object of
study in the last chapter. We introduce formal definitions about how to measure the
degree of mixedness of a passive scalar and present the idea of enhanced dissipation by
incompressible vector fields.

Chapter 3 deals with stability estimates for the advection-diffusion equation with
vector fields in low regularity settings. In order to derive such estimates we use distances
from the theory of optimal transport. On the one hand we consider vector fields in
the DiPerna-Lions setting and derive an estimate that is optimal in some regards that
we also discuss. On the other hand we come up with a new uniqueness result for the
advection-diffusion equation with vector fields whose gradient is a singular integral of a
merely integrable function. This extends the previous work for the transport equation
[31] to the diffusive setting.

In Chapter 4 we derive optimal error estimates for an implicit finite volume approxima-
tion of the advection-diffusion equation with vector field again in a low regularity setting,
namely in the DiPerna-Lions class. By means of both a Eulerian and a Lagrangian per-
spective, we come up with the appropriate bounds for the distance between the solution
from upwind scheme and the exact solution. We use yet again a distance coming from
the theory of optimal transport that metrizes weak convergence. This results generalizes
the previous work [79, 80] to the diffusive setting, and improves the order of convergence
regarding the size of the mesh from 1/2 to 1.

To sum up, Chapter 5 contains results from an unfinished, challenging project regarding
ergodicity and mixing properties of randomly driven vector fields. More precisely we
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Chapter 1. Introduction

derive exponential ergodicity and annealed mixing provided that certain operator is
hypocoercive. We introduce a new method to study the mixing problem with stochastic
vector fields from a PDE perspective, which extends the previous work based on the
Lagrangian picture [7, 8]. In addition, we provide new examples of vector fields that
satisfy the required conditions for exponential ergodicity in bounded domain with and
without boundary.

Chapter 2 contains no new results. Chapter 3 is based on the article [72], which is a
joint work with André Schlichting and Christian Seis. Large parts of it are reproduced
verbatim. Chapter 4 is based on the article [71], which is joint with André Schlichting
and large parts of it are reproduced verbatim as well. Chapter 5 is a joint work with
André Schlichting and Christian Seis and the results included appear for the first time in
this thesis.
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2. Preliminary results

This chapter contains some relevant definitions, concepts, and preliminary results that
will be needed for the subsequent chapters of this thesis. There are no new results
included.

On a first note let us define some symbols, abbreviations, notation and conventions
that we will use along the monograph.

• D is a finite dimensional Polish space. In most cases we will consider D to be Rd

or a bounded subset of Rd, such as the torus D = Td = Rd/[0, 2π) or a bounded
domain with a sufficiently regular boundary.

• Given a subset A ⊆ D, we denote its complementary as Ac = D \A

• Given a function f : D → R we write f+ = max{f, 0} for the positive part of f , and
f− = − min{f, 0} for the negative part so that f = f+ − f− and |f | = f+ + f−.

• B(D) is the Borel σ−algebra of D.

• (Ω,F ,P) is a probability space, where Ω is the sample space, F a σ−algebra and P
a probability measure. A typical example that we use is the probability space of
Brownian motion, where Ω = C0([0,∞),Rd) is the set of all continuous path with
ω(0) = 0, F = {Ft}t≥0 is a filtered σ−algebra and P a Wiener probability measure.

• P(D) is the set of all probability measures in D.

• Given a bijective map T : D → D and a measure µ on D, we define the push-forward
measure T#µ as

T#µ(A) = µ(T−1A) for all A ∈ B(D).

If the measure µ admits a density f : D → R such that dµ(x) = f(x) dx, the
push-forward measure can be defined via∫

D
ϕ(x)(T#f)(x) dx =

∫
D
ϕ(T (x))f(x) dx,

for all ϕ sufficiently regular.
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Chapter 2. Preliminary results

• Unless otherwise is stated, ∥ · ∥ denotes the L2(D) norm, and we write ⟨·, ·⟩ for the
standard scalar product in L2(D),

⟨f, g⟩ =
∫

D
fg dx,

namely ∥f∥2 = ⟨f, f⟩.

• We use the Bochner space notation Lr(Ls) to denote the space Lr((0, T );Ls(D))
and similarly for other Banach spaces.

• We write a ≲ b if there exists a constant C > 0 such that a ≤ Cb.

2.1. Energy estimates for advection-diffusion equations

Let D ⊆ Rd be a domain with or without boundary and 0 < T ≤ +∞ a maximal time
of existence. Consider the advection-diffusion equation that models the evolution of a
passive scalar θ : (0, T ) × D → R driven by a vector field u : (0, T ) × D → Rd given by
the Cauchy problem,

∂tθ + ∇ · (uθ) = κ∆θ in (0, T ) × D,
n · (u− κ∇θ) = 0 on (0, T ) × ∂D,

θ(0, ·) = θ0 in D.
(2.1)

Here κ ≥ 0 is the diffusion coefficient n(x) is the outer unit vector at position x ∈ ∂D. If
D = Rd or D = Td, then the boundary conditions disappear from the equation.

One straightforward consequence of this definition is that, due to linearity, the mass of
the passive scalar is conserved in D for all times, namely∫

D
θ(t, ·) dx =

∫
D
θ0 dx for all t ∈ (0, T ).

Well-posedness of solutions for smooth vector fields and initial data goes back to the
classical theory of parabolic equations, see Ladyženskaya et al. [58]. In some specific
contexts in physics, for instance, when studying the transport of a mass, dye, or any scalar
quantity by a turbulent flow [74, 86], the vector field involved has a very low regularity,
thus a mathematical theory for transport and advection-diffusion equations with rough
vector fields is needed. In this regard, we define the following notion of solution to (2.1).
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Chapter 2. Preliminary results

Definition 2.1. Let u ∈ L1((0, T );Lploc(D)) and θ0 ∈ Lqloc(D) be given for some

p, q ∈ [1,+∞] with 1
p

+ 1
q

≤ 1.

A function θ ∈ L∞((0, T );Lqloc(D)) is called a distributional solution of (2.1) if∫∫
(0,T )×D

θ
(
∂tϕ+ u · ∇ϕ+ κ∆ϕ

)
dx dt+

∫
D
θ0 ϕ|t=0 dx = 0

holds for all ϕ ∈ C∞
c ([0, T ) × D).

In order to obtain uniqueness of distributional solutions, a customary aproach is based
on energy estimates. Testing with the appropriate functions in (2.1) we obtain the
following, at first formal, energy estimates:

1
q(q − 1)

d

dt

∫
D

|θ|q dx+ κ

∫
D

|θ|q−2|∇θ|2 dx ≤
∫

D
|θ|q−1|∇θ||u| dx, (2.2)

1
q(q − 1)

d

dt

∫
D

|θ|q dx+ κ

∫
D

|θ|q−2|∇θ|2 dx ≤
∫

D
|θ|q(∇ · u)− dx, (2.3)

for any q > 1. The limit q → 1 leads to an apriori estimate in terms of the entropy of
the form,

d

dt

∫
D
θ log θ dx+ κ

∫
D

|∇θ|2

θ
dx ≤

∫
D

|θ|(∇ · u)− dx. (2.4)

These energy estimates provide a framework to deal with well-posedness of equation
(2.1) assuming different regularities for the vector field. In particular we are mostly
interested in the following settings.

1. The Ladyženskaya–Prodi–Serrin setting. Estimate (2.2) yields that there exists a
unique distributional solution to (2.1)

θ ∈ L∞((0, T );L2(D)),

provided that θ0 ∈ L2(D) and u ∈ Lr((0, T );Lp(D)) with

2
r

+ d

p
≤ 1, with r ∈ [2,∞) and p ∈ (d,∞] if d ≥ 2,

r ∈ [2, 4] and p ∈ [2,∞] if d = 1.

This setting has been recently revisited in [11].

2. The DiPerna–Lions setting. Estimate (2.3) yields that there exists a unique

7



Chapter 2. Preliminary results

distributional solution to (2.1)

θ ∈ L∞((0, T );Lq(D)),

provided that θ0 ∈ Lq(D) and the vector field is weakly compressible, namely

u ∈ L1((0, T );W 1,p(D)) and (∇ · u)− ∈ L1((0, T );L∞(D))

with p, q ≥ 1 Hölder conjugate or larger,

1
p

+ 1
q

≤ 1.

This is the most relevant regularity setting for Chapters 3 and 4. This result can
be found in [37, 59].

In general, if κ > 0 we also obtain a control over the derivatives of the passive scalar.
For instance, if D is bounded or θ0 ∈ L1 ∩ Lq has finite first moments, we obtain that

∇θ ∈ L1((0, T );L1(D)),

which is of relevance for Chapter 3.
The DiPerna–Lions theory was further extended by Ambrosio [3] to weakly compressible

vector fields of BV−regularity. In addition, in Chapter 3, we address the problem with
vector fields whose gradient is a singular integral of an L1 function [31, 72], which is of
interest for certain problems in fluid dynamics.

The condition for the coefficients given by the DiPerna–Lions setting is optimal for
both κ > 0 and κ = 0. Indeed, with the method of convex integration, Modena, Sattig,
and Székelyhidi [69, 70] showed that there are Sobolev vector fields

u ∈ C([0, T ]; (Lp ∩W 1,p′)(Td))

for which uniqueness fails in the class of densities θ ∈ C([0, T ];Lq(Td)) with p, q ∈ (1,∞),
p′ ∈ [1,∞) such that there holds

1
p

+ 1
q

= 1, 1
p′ + 1

q
> 1 + 1

d
and p < d.

An improvement on the above condition is obtained by Cheskidov and Luo [22] for the
transport equation (κ = 0) at the expense of a worse time-integrability, that is solutions

8



Chapter 2. Preliminary results

θ ∈ L1([0, T ];Lq(Td)) with
1
p

+ 1
q
> 1.

2.2. Optimal transport distances

In this section we introduce some tools from the theory of optimal transportation that
will be useful in the different stability results from theorems in Chapters 3 and 4. We
decide to make a presentation suitable for our needs, in a rather smooth setting that
is enough for our purposes. For generalizations and detailed proofs of the subsequent
results, we refer to Villani’s monograph [94].

Definition 2.2. Given two nonnegative densities

µ1, µ2 ∈ L1
+(Rd) = {µ ∈ L1(Rd) : µ ≥ 0},

we define Π(µ1, µ2) to be the set of all transport plans between µ1 and µ2. Namely,
π ∈ Π(µ1, µ2) is a measure in Rd × Rd with the property

π[A× Rd] = µ1[A], π[Rd ×A] = µ2[A], for all A ∈ B(Rd).

Analogously, it can also be define via the integral formulation, namely we say π ∈ Π(µ1, µ2)
if there holds ∫∫

Rd×Rd
f(x1) dπ(x1, x2) =

∫
Rd
f(x1) dµ1(x1),∫∫

Rd×Rd
f(x2) dπ(x1, x2) =

∫
Rd
f(x2) dµ2(x2).

We want to consider distances arising from the optimal transportation problem. We
say that a function

c : [0,∞) → [0,∞)

is a cost function if it continuous and nondecreasing. The optimal transport problem
or also called Kantorovich problem, is defined as a minimization problem of the total
transportation cost from one configuration µ1 to another configuration µ2. We denote
this quantity by

Dc(µ1, µ2) = inf
π∈Π(µ,ν)

∫∫
Rd×Rd

c(|x− y|) dπ(x, y). (2.5)

From a physical perspective one could say that Dc(µ1, µ2) measures the minimal total cost
of transporting an initial configuration of mass or goods given by µ to a final configuration

9



Chapter 2. Preliminary results

ν if the cost of the transport of an infinitesimal part is modelled by c.
For our purposes we want to consider cost functions c : [0,∞) → [0,∞) that are strictly

concave, Lipschitz with uniform Lipschitz constant Lc and such that c(0) = 0. This type
of cost functions induces a metric

d(x, y) = c(|x− y|) on Rd.

Moreover, as it is proved in [94, Theorem 1.14], in this case the optimal transportation
problem (2.5) admits a dual formulation,

Dc(µ1, µ2) = sup
|ζ(x)−ζ(y)|≤c(|x−y|)

∫
Rd

(µ1(x) − µ2(x))ζ(x) dx. (2.6)

Note then that Dc(µ1, µ2) is a transshipment cost that only depends on the difference
µ1 − µ2. This allows us to extend the theory to densities that are not necessarily
nonnegative but just that verify µ[Rd] = ν[Rd] ∈ R.

In addition, because d(x, y) = c(|x − y|) is a metric on Rd, Dc(·, ·) defines a metric
on the space of densities with the same total mass and it is usually referred to as the
Kantorovich–Rubinstein distance or, optimal transportation distance. Therefore, for any
function θ ∈ L1(Rd) with zero total mass, θ+[Rd] = θ−[Rd], we conveniently define the
norm

Dc(θ) = Dc(θ+, θ−). (2.7)

It is known that the first problem (2.5) admits a unique minimizer, in general
πopt ∈ Π(µ, ν), named the optimal transport plan. The dual problem (2.6) also ad-
mits a maximizer, that could be nonunique ζopt, called the Kantorovich potential. It is
characterized by the relation

ζopt(x) − ζopt(y) = c(|x− y|) for dπopt − almost all (x, y).

We can weakly-differentiate this identity to obtain

∇xζopt(x) = ∇yζopt(y) = c′(|x− y|) x− y

|x− y|
for dπopt − almost all (x, y),

and therefore it holds |∇ζopt| ≤ Lc, since the cost function is Lc−Lipschitz.
There is nonetheless an additional way of presenting the optimal transport plan

πopt ∈ Π(µ, ν) when the cost function is strictly concave. Gangbo and McCann [48]

10
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proved that there exist measurable maps T, S : Rd → Rd such that there holds

πopt = (id ×T )#µ1 = (S × id)#µ2

and where T and S obey the relations µ = S#ν, ν = T#µ. This characterization will be
useful in the subsequent sections to prove some relevant results.

The following are examples of optimal transport distances that are relevant for the
subsequent chapters of this thesis.

• 1−Wasserstein distance W1: This distance is defined from the cost function c(z) = z,
and using the dual representation (2.6) it can be represented in terms of 1−Lipschitz
functions as

W1(µ1, µ2) = sup
∥∇ζ∥L∞ ≤1

∫
Rd

(µ1(x) − µ2(x))ζ(x) dx. (2.8)

One can see from this representation that for mean zero functions θ, the norm
W1(θ+, θ−) coincides with the norm of the negative Sobolev space Ẇ−1,∞(Rd).
The Wasserstein distances are in general defined for any p ≥ 1 through the convex
cost function c(z) = cp.

• Logarithmic optimal transport distance Dδ: This is the distance we use for most of
the results presented in Chapters 3 and 4. It is defined, for any given δ > 0 by the
cost function

c(z) = log
(
z

δ
+ 1

)
. (2.9)

This is a concave cost that produces the following bound for the optimal Kantorovich
potential,

∥∇ζopt∥L∞ ≤ 1
δ
.

• Bounded distance Db: This distance function is defined via the cost function,

c(z) = tanh(z). (2.10)

Compared to the logarithmic case, it has the property of being bounded as the
name indicates, which comes in handy for some applications.

Recall that by (2.7) both Dδ and Db induce norms in the space of zero average densities.
For every θ ∈ L1(Rd) mean zero, Db(θ) can be controlled by Dδ(θ) through the following
Lemma, introduced and first proved in [83] and later adapted in [31] to a more convenient
framework for our purposes here.
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Lemma 2.1. Let θ ∈ L1(Rd) and mean zero. Then ∀γ, δ > 0 it holds

Db(θ) ≤ Dδ(θ)
log 1

γ

+ δ

γ
∥θ∥L1 .

A nice and short proof of this Lemma can be found in [31, Lemma 3.1].
In the forthcoming sections we will apply these optimal transportation distances with

densities that depend not only on x ∈ Rd but also on t ∈ (0, T ). Therefore the optimal
transport plans or the Kantorovich potentials might be time-dependent. In order to
simplify the notation we will refer as πt to the optimal transport plan πopt associated to
the distance Dc(µ1(t, ·), µ2(t, ·)), with t ∈ (0, T ). Analogously we write ζt to denote the
Kantorovich potential ζopt associated to the same distance.

In order to obtain stability for optimal transport distances, we need to introduce the
following key result. It was first proved in [83], however we include the proof from [72]
here because we consider that it might be clarifying for the reader.

Lemma 2.2. Let µ1 and µ2 be two distributional solutions in L1(W 1,1) to the advection-
diffusion equation with advection fields u1, u2 and diffusion coefficients κ1, κ2 > 0 respect-
ively. Then the mapping t 7→ Dc(µ1(t, ·), µ2(t, ·)) is absolutely continuous with

d

dt
Dc(µ1(t, ·), µ2(t, ·)) =

∫
Rd

∇ζt · (u1(t, x)µ1(t, x) − u2(t, x)µ2(t, x)) dx

−
∫
Rd

∇ζt · (κ1∇µ1(t, x) − κ2∇µ2(t, x)) dx
(2.11)

where ζt is the Kantorovich potential corresponding to Dc(µ1(t, ·), µ2(t, ·)).

Proof. By the definition of distributional solution, by a standard approximation argument
and integrating by parts, for any h ∈ R such that t− h ∈ (0, T ) we have that∫

Rd
ζ(µi(t, x) − µi(t− h, x)) dx =

∫
Rd

∇ζ ·
∫ t

t−h
ui(s, x)µi(s, x) ds dx (2.12)

+ κi

∫
Rd
ζ

∫ t

t−h
∆µi(s, x) ds dx

=
∫
Rd

∇ζ ·
∫ t

t−h
ui(s, x)µi(s, x) ds dx

− κi

∫
Rd

∇ζ ·
∫ t

t−h
∇µi(s, x) dsdx (2.13)

for all ζ ∈ C∞
c (Rd), almost every t ∈ (0, T ) and both i ∈ {1, 2}. Since now µi and uiµi

are in L1(L1) we are allowed to consider (2.13) for all ζ ∈ W 1,1(Rd).

12



Chapter 2. Preliminary results

First we will show that the mapping t 7→ Dc(µ1(t, ·), µ2(t, ·)) is absolutely continuous
and therefore differentiable almost everywhere in (0, T ). By the optimality of the
Kantorovich potential ζt at time t it holds for almost every t ∈ (0, T ) that

Dc(µ1(t, ·), µ2(t, ·)) − Dc(µ1(t− h, ·), µ2(t− h, ·))

≤
∫
Rd
ζt(µ1(t, x) − µ1(t− h, x)) dx−

∫
Rd
ζt(µ2(t, x) − µ2(t− h, x)) dx

=
∫
Rd

∇ζt ·
∫ t

t−h
u1(s, x)µ1(s, x) dsdx−

∫
Rd

∇ζt ·
∫ t

t−h
u2(s, x)µ2(s, x) ds dx

− κ1

∫
Rd

∇ζt ·
∫ t

t−h
∇µ1(s, x) ds dx+ κ2

∫
Rd

∇ζt ·
∫ t

t−h
∇µ2(s, x) ds dx. (2.14)

Analogously, again by the optimality of the Kantorovich potential ζt−h at time t− h, it
holds for almost every t ∈ (0, T ) that

Dc(µ1(t, ·), µ2(t, ·)) − Dc(µ1(t− h, ·), µ2(t− h, ·))

≤
∫
Rd
ζt−h(µ1(t, x) − µ1(t− h, x)) dx−

∫
Rd
ζt−h(µ2(t, x) − µ2(t− h, x)) dx

=
∫
Rd

∇ζt−h ·
∫ t

t−h
u1(s, x)µ1(s, x) ds dx−

∫
Rd

∇ζt−h ·
∫ t

t−h
u2(s, x)µ2(s, x) ds dx

− κ1

∫
Rd

∇ζt−h ·
∫ t

t−h
∇µ1(s, x) ds dx+ κ2

∫
Rd

∇ζt−h ·
∫ t

t−h
∇µ2(s, x) ds dx.

(2.15)

Therefore, using that ζt is Lipschitz with Lipschitz constant uniformly bounded by Lc,
we can combine (2.14) and (2.15) to obtain

|Dc(µ1(t, ·), µ2(t, ·)) − Dc(µ1(t− h, ·), µ2(t− h, ·))|

≤ Lc

∫ t

t−h

∫
Rd

|u1(s, x)µ1(s, x)| dsdx+ Lc

∫ t

t−h

∫
Rd

|u2(s, x)µ2(s, x)| ds dx

+ Lcκ1

∫ t

t−h

∫
Rd

|∇µ1(s, x)| ds dx+ Lcκ2

∫ t

t−h

∫
Rd

|∇µ2(s, x)| dsdx

for almost every t ∈ (0, T ). Since uiµi ∈ L1(L1) and ∇µi ∈ L1(L1) for i ∈ {1, 2}, we
conclude that indeed t 7→ Dc(θ(t, ·)) is an absolutely continuous mapping.

It remains to prove that the derivative of the mapping takes the expression (2.11). In
order to do that, we consider again (2.14) and (2.15), divide by h and let h → 0. By

13



Chapter 2. Preliminary results

Lebesgue’s differentiation theorem we get

lim
h→0+

Dc(µ1(t, ·), µ2(t, ·)) − Dc(µ1(t− h, ·), µ2(t− h, ·))
h

≤
∫
Rd

∇ζt · (u1(t, x)µ1(t, x) − u2(t, x)µ2(t, x)) dx

−
∫
Rd

∇ζt · (κ1∇µ1(t, x) − κ2∇µ2(t, x)) dx

and

lim
h→0−

Dc(µ1(t, ·), µ2(t, ·)) − Dc(µ1(t− h, ·), µ2(t− h, ·))
h

≥
∫
Rd

∇ζt · (u1(t, x)µ1(t, x) − u2(t, x)µ2(t, x)) dx

−
∫
Rd

∇ζt · (κ1∇µ1(t, x) − κ2∇µ2(t, x)) dx

which implies (2.11) for almost every t ∈ (0, T ). ■

2.3. Markov processes and invariant measures

In Chapter 5 we consider some solutions to the transport and advection-diffusion equation
with random vector fields. In order to get a full understanding of these objects, especially
when dealing with the Lagrangian perspective, it is important to introduce some Markov
processes generated by the stochastic flow.

Here we present a summary of some definitions and properties of Markov processes
that will be relevant for our purposes later. For details and further information about
the theory of Markov processes and their invariant measures see [32, 50, 51].

Consider a probability space (Ω,F ,P) and a filtration of the σ−algebra {Ft}t≥0. Let
Xt : Ω × D → D be a stochastic flow in D ⊆ Rd with t ≥ 0 that is adapted to the
filtration, namely Xt is a (Ft ⊗ B(D),B(D))−measurable function for each t ≥ 0.

Definition 2.3. We say that the stochastic process {Xt}t≥0 has the Markov property if
for every A ∈ B(D) and all 0 ≤ s < t there holds

P[Xt ∈ A | Fs] = P[Xt ∈ A | Xs].

Markov processes can be understood through their transition kernels. In our continuous

14



Chapter 2. Preliminary results

time situation we will denote the Markov kernel of the process {Xt}t≥0 by

Pt(x,A) = P[Xt ∈ A | X0 = x],

with t > 0, A ∈ F and x ∈ D. This object, in general words, represents the probability
for the stochastic flow Xt to be in the Borel set A ⊂ D at time t > 0 provided that
initially it was at position x ∈ D.

Markov transition kernels {Pt}t≥0 can act on different type of objects. Next in order
we introduce some relevant properties of the Markov kernels since these are of great
importance when studying the dynamics of the stochactic flows.

• Pt(x, ·) is a Borel probability measure on D.

• Markov kernels act on continuous functions ϕ ∈ C(D),

Ptϕ(x) =
∫

D
ϕ(y)Pt(x, dy).

• Regarded as operators Pt : C → C, Markov kernels have the semigroup property,

P0 = id, Pt+s = Pt ◦ Ps for all t, s ≥ 0.

In this way we can refer to {Pt}t≥0 as the Markov semigroup.

Definition 2.4. Let {Pt}t≥0 be a Markov transition kernel in D as defined before and
let Cb = C ∩ L∞ be the space of continuous and bounded functions.

1. We say that the Markov process has the Feller property if Ptϕ ∈ Cb for all ϕ ∈ Cb.

2. We say that {Pt}t≥0 has the strong Feller property if Ptϕ ∈ Cb for any continuous
function ϕ ∈ C that is not necessarily bounded.

Notice that if the mapping x 7→ Pt(x, ·) is weak⋆ continuous on the space of probability
measures in D, then Pt is Feller. In relation to this, it makes sense to consider the action
of the Markov kernel on the elements of the dual space of Cb.

• Markov kernels act on probability measures µ ∈ P(D),

Ptµ(A) =
∫

D
Pt(x,A) dµ(x), for all A ∈ F .

Definition 2.5. Let {Pt}t≥0 be a Markov transition kernel in D as defined before.
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1. We say that µ is an invariant measure for the Markov process if Ptµ(A) = µ(A) for
all A ∈ F and all t ≥ 0.

2. A Borel set A ⊆ D is called (Pt, µ)−invariant if PtχA = χA holds µ−almost
everywhere, where χA is the indicator function for the set A ∈ F .

3. An invariant measure µ is said to be ergodic if the unique (Pt, µ)−invariant sets
are D and ∅. In particular, if µ is ergodic there holds∣∣∣∣Ptϕ(x) −

∫
D
ϕ dµ

∣∣∣∣ → 0 as t → ∞

for all ϕ regular enough and almost all x ∈ D, namely the invariant measure is
attracting.

In general, if µ is the unique ergodic measure of a Markov process Pt then it is
automatically ergodic. For the proof of this fact and further details about the ergodicity
of Markov processes, see [32].

Next, we can proceed with a classical result about existence of invariant measures, but
before we need to define an important property for measures.

Definition 2.6. We say that a collection of measures M on a metric space D is tight if
for any ε > 0 there exists a compact subset Kε ⊆ D such that

|µ|(D \Kε) < ε

for all µ ∈ M and where | · | denotes the total variation.

Theorem 2.1 (Krylov–Bogolioubov). Let D be Polish and let {Pt}t≥0 be a Markov
process with the Feller property. Assume that there exists x0 ∈ D such that Pt(x0, ·) is
tight, then there exists at least one invariant measure µ on D for Pt.

A constructive way to understand this statement goes as follows. Let ν be a probability
measure on D, and consider the time-averaged action of Pt on ν,

Rtν = 1
t

∫ t

0
Psν ds.

What Krylov–Bogolioubov proved is that if there exists a sequence of times {tn}n∈N and
a measure µ that is a weak limit of the measures Rtnν as n → ∞, then µ is an invariant
measure of Pt. In addition, Rtν will be tight if Pt is, and therefore there exists a weakly
convergent subsequence. Notice that if D is compact, every collection of measures is tight
and therefore the existence of an invariant measure is guaranteed.
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We have seen that a sufficient condition for ergodicity is the uniqueness of an invariant
measure. In relation to that we have the following classical result by Doob, [39].

Theorem 2.2 (Doob). Let {Pt}t≥0 be a continuous Markov process and µ an invariant
measure. If there exists t0 > 0 such that all the transition probabilities Pt0(x, ·) are
equivalent for all x ∈ D, then µ is the unique invariant measure of Pt.

Moreover we know that if {Pt}t≥0 has the strong Feller property and is topologically
irreducible, then the condition for Doob’s Theorem are satisfied. However it is not
trivial to prove that a Markov process has the strong Feller property, and sometimes
it is more convenient to argue on a different direction. Typically, if we are hoping for
exponential ergodicity a classical strategy is to look for the conditions in Harris’ Theorem,
see [21, 52, 67]. We elaborate on this on Chapter 5.

2.4. The mixing problem

In this section we introduce formal definitions regarding the notion of mixing of passive
scalars that will be relevant for Chapter 5. In that Chapter we address the problem
of ergodicity that implies some special kind of mixing, so for the sake of a better
understanding we give here a brief introduction to the notion of mixing.

Consider a domain D ⊂ Rd, and denote by θ : (0,∞) × D → R the passive tracer that
is advected by a divergence free vector field u. Then, θ satisfies the equation

∂tθ + u · ∇θ = κ∆θ,

where κ = 0 if there is no diffusion, i.e. transport equation, and κ > 0 in case diffusion
is present, i.e. advection-diffusion equation. Without loss of generality we assume that
initially θ(0, ·) = θ0 has mean zero, and thus as explained in Section 2.1, θ(t, ·) will have
mean zero for all t > 0 due to linearity.

Intuitively, the phenomenon of mixing can be understood as a cascading mechanism
that brings information to smaller and smaller scales. A typical exemplifying situation
concerns an initial configuration with black and white bits that are clearly differentiated,
e.g. a 2 × 2 checkerboard. If we study the evolution of such configuration according to a
transport or an advection-diffusion equation, there are two possible outcomes that are of
interest, see Figure 2.4.

• It might happen that the black-and-white patches become more homogeneous,
creating shades of grey due to the effect of the diffusion.
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Figure 2.1.: Two types of mixing mechanisms: filamentation produced by the vector field,
and homogenization produced by diffusion.

• If there is no diffusion, it might also happen that the vector field creates filaments
of black-and-white areas that become thinner and thinner.

It has been a matter of interest for decades to come up with a mathematically rigorous
notion of mixing that includes both possible situations, see [91]. On a first note, one can
think of the variance to be a good quantity to measure mixing,

Var(θ) =
∫

D

∣∣∣∣θ(x) − −
∫
θ(z) dz

∣∣∣∣2 dx.

However, for mean free functions there holds Var(θ) = ∥θ∥2
L2(D), and this quantity gives

no information for the κ = 0 case, since the transport equation conserves the L2−norm
in time

∥θ(t)∥L2(D) = ∥θ(0)∥L2(D) for all t > 0,

due to the divergence free property of the vector field u.
The L2−norm or variance can be used only for the advection-diffusion equation when

κ > 0. We want to find formal definitions regarding how to measure the degree of
mixedness that is applicable for both the diffusive and the purely advective case.

Two decades ago, Bressan [19] introduced the so-called geometric mixing scale. Heur-
istically speaking, this notion consists on considering a magnifying glass of size ε > 0 and
checking with it that everywhere in the domain, the average that can be seen with such
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magnifying glass is smaller that δ > 0. More in detail we define the geometric mixing
scale as follows.

Definition 2.7. Given ε, δ ∈ (0, 1), we say that a mean zero scalar function θ ∈ L∞(D)
is δ−mixed to scale ε if ∣∣∣∣∣−

∫
Bε(x)∩D

θ(z) dz
∣∣∣∣∣ ≤ δ

for all x ∈ D.

In the original paper [19], Bressan made an important conjecture about the cost of
rearrangements in D = T2, for an initial configuration of the form

θ0 = χ[0,2π)×[0,π) − χ[0,2π)×[π,2π),

i.e. a 2 × 1 checkerboard. Bressan’s conjecture says that if there is a divergence free
vector field u satisfying the constraint

sup
t>0

∥∇u(t)∥L1(D) ≤ 1 (2.16)

and such that it 1/3−mixes θ0 to scale ε ≪ 1 in time t, then there exists a constant
C > 0 such that t > C| log ε|. Namely, given the constrain (2.16), Bressan’s mixing scale
cannot decrease faster than exponentially.

The conjecture on its originally form is still open as of today, although a few years
later, Crippa and DeLellis proved it to be true in [29] for vector fields that satisfy (2.16)
with the Lp−norm and p > 1. On a recent work, Cooperman [27] proves it to be true
also in the limit p = 1 for the special case of vector fields that are shears at each time.

The geometric mixing scale is not the only notion that is usually addressed in the
literature to measure mixing. A few years after, Mathew, Mezić, Petzold, Doering
and Thiffeault [38, 63] proposed negative Sobolev norms as a measure of the degree of
mixedness of a passive trace. These defines the so-called functional mixing scale and it is
the notion of mixing that we use in Chapter 5. Before proceeding with the details let us
introduce some needed preliminaries.

Let D ⊂ Rd a bounded domain with smooth boundary. Let {ϕk}k≥1 be an orthonormal
basis for the mean free functions in L2(D) given by the Neumann–laplacian,{

−∆ϕk = λkϕk in D
n · ∇ϕk = 0 on ∂D,

with ∥ϕk∥L2 = 1 for all integers k ≥ 1. Since we are removing the zero-th mode because
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of the mean free condition, notice that λk > 0 for all k ≥ 1 and moreover there holds

λk ≤ λk+1 for all integers k ≥ 1.

With this notion we define the homogeneous Sobolev space of order m, as the set of
measurable and mean zero functions f : D → R such that

∥f∥2
Ḣm(D) =

∑
k≥1

λmk ⟨ϕk, f⟩2
L2(D) < ∞.

Notice that {ϕk}k≥1 also forms an orthogonal basis in Ḣm(D) since λk > 0 for all k ≥ 1
therefore λk⟨ϕk, f⟩ = 0 for all k ≥ 1 implies f = 0. This definition is motivated by the
fact that in this way we can write

∥ϕk∥2
Ḣm(D) = ∥∇mϕk∥2

L2(D) = λmk ∥ϕk∥2
L2(D) = λmk

for any integer k ≥ 1 and m ∈ R.
In addition, notice that the negative homogeneous Sobolev norms are a good measure

of the degree of mixedness of a passive scalar. Each mode of the Sobolev norm of order
m = −s < 0 scales as

⟨ϕk, f⟩2

k2s/d ,

and therefore a convergence to zero of such norm can be a consequence of two phenomena.

• Homogenization. It could be that each mode ⟨ϕk, f⟩ individually goes to zero, which
means that all the energy is dissipating and thus it can only happen if there is
diffusion κ > 0.

• Filamentation. The Ḣ−s norm can decay as well if all the energy goes to the
larger–in–k modes ⟨ϕk, f⟩ since the higher k−modes are divided by a larger factor
k2s/d. In such case the total energy, namely the L2 norm, remains conserved and
thus this occurs only if there is no diffusion κ = 0.

With that in mind we define the functional mixing scale, which is used as a measure of
mixing in Chapter 5.

Definition 2.8. We say that a vector field u mixes θ0 ∈ (L∞ ∩ Hs)(D) mean zero if
there exists s > 0 such that the solution θ to the transport equation starting from θ0

satisfies
∥θ(t)∥Ḣ−s(D) → 0 as t → ∞.
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In particular we say that there is exponential mixing if there exists γ > 0 such that

∥θ(t)∥Ḣ−s(D) ≲ ∥θ0∥Hs(D)e
−γt

for all t > 0.

The particular choice of s > 0 for the Ḣ−s−norm is not so relevant. Originally
the most frequent norm was the Ḣ−1/2−norm [40, 63], since it is equivalent to some
previous definition of mix-norm that is more related to Bressan’s geometric mixing scale.
More recently, the most prevailing way to define the mixing scales is by means of the
Ḣ−1−norm, [1, 62, 68]. Notice that the Ḣ−s−norm scales like [Length]s, and thus if s = 1
the norm potentially has a physical interpretation as the length of the filamentations.
There are some other relevant choices of functional mixing scales, e.g. optimal transport
distances [82], that can be related to some negative Sobolev norms but that we will not
discuss them here.
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3. Stability results for distributional
solutions with rough vector fields

This chapter is based on the article [72], which is a joint work with André Schlichting
and Christian Seis. Large parts of it are reproduced verbatim.

Chapter summary

This work contains two main contributions. First, it provides optimal stability
estimates for advection-diffusion equations in a setting in which the velocity
field is Sobolev regular in the spatial variable. This estimate is formulated
with the help of Kantorovich–Rubinstein distances with logarithmic cost
functions. Second, the stability estimates are extended to the advection-
diffusion equations with velocity fields whose gradients are singular integrals
of L1 functions, entailing a new well-posedness result.

3.1. Introduction

In this section we deal with stability properties for solution to the advection-diffusion
equation. Consider a passive scalar θ in Rd driven by some vector field u : (0, T )×Rd → Rd

and in presence of diffusion κ > 0. Then the dynamics of the passive scalar are described
by the Cauchy problem,{

∂tθ + ∇ · (uθ) = κ∆θ in (0, T ) × Rd,
θ(0, ·) = θ0 in Rd,

(3.1)

where θ0 represents the initial configuration.
The mathematical theory in the setting of smooth vector fields is contained in the

general classical theory for parabolic equations; see, for instance, Ladyzhenskaya et
al. [58]. Thanks to the linearity of the equations, well-posedness is then based on simple
a priori estimates.

However, there are some important examples, for instance, in the areas of fluid dynamics
or kinetic theories, in which the advecting velocity fields and the observed quantities
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are rather rough. Thus, the mathematical theory for the advection-diffusion equation
(3.1) falls out of the setting covered by classical theories, and it has been discovered only
recently that there are situations in which integrable distributional solutions cease to be
unique [22, 70, 69]. For more details about uniqueness of solutions in different regularity
settings see Section 2.1

A customary proof of uniqueness is based on energy estimates. We are aware of two
approaches to energy estimates that deal with different weak hypotheses on regularity
and integrability of vector fields and solutions, both embarking from the following (at
first formal) estimates

1
(q − 1)q

d

dt

∫
Rd

|θ|q dx+ κ

∫
Rd

|θ|q−2|∇θ|2 dx ≤


∫
Rd |θ|q−1|∇θ||u| dx,

∫
Rd |θ|q(∇ · u)− dx,

(3.2)

for q > 1. Here, the superscript minus sign labels the negative part of the divergence.
The limit q → 1 leads to an a priori estimate in terms of the entropy and is discussed in
Remark 3.1 below.

The first approach, which is based on the first estimate, applies to velocity fields
in the integrability class Lr((0, T );Lp(Rd)) provided that r and p satisfy the so-called
Ladyzhenskaya–Prodi–Serrin condition

2
r

+ d

p
≤ 1.

Here, the task is to bound the integral on the right-hand side in terms of those on the
left-hand side, which can be achieved with standard Hölder and Sobolev inequalities.
Apparently, the parabolic structure is of fundamental importance in this approach and
the method ceases to hold in the non-diffusive setting κ = 0. Since we are particularly
interested in estimates that hold uniformly for positive but arbitrary small diffusivity
parameter κ, we will not further elaborate on it here. We refer to [11] for a simple proof
in the q = 2 setting and a discussion on optimality.

The second approach is particularly important in models in which the fluid is at most
weakly compressible in the sense that

(∇ · u)− ∈ L1((0, T );L∞(Rd)
)
. (3.3)
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In this case, an application of a Gronwall argument implies the estimate

∥θ∥L∞(Lq) + cκ,q∥∇|θ|
q
2 ∥

2
q

L2(L2) ≲ Λ1− 1
q ∥θ0∥Lq (3.4)

where cqκ,q = κ(q − 1) and log Λ = ∥(∇ · u)−∥L1(L∞). In order to make this approach
work rigorously, the validity of the chain rule has to be confirmed to establish the
energy estimate (3.2). This leads us to the concept of renormalized solutions, which were
originally introduced by DiPerna and Lions in [37]: An integrable function θ is called a
renormalized solution to the advection-diffusion equation (3.1) if it satisfies

∂tβ(θ) + ∇ · (uβ(θ)) = (β(θ) − θβ′(θ))∇ · u+ κ∆β(θ) − κβ′′(θ)|∇θ|2 (3.5)

in the distributional sense, for any bounded C2 function β : R → R whose derivatives are
bounded and vanish at zero. Renormalized solutions are easily proved to be unique, and
DiPerna and Lions’ theory shows that distributional solutions in L∞((0, T );Lq(Rd)) are
renormalized if the advecting velocity field is Sobolev regular in the spatial coordinate,
namely u ∈ L1((0, T );W 1,p(Rd)), and p and q have to be Hölder conjugates (or larger),
1/p+ 1/q ≤ 1. In what follows, we will occasionally refer to this setting as the DiPerna–
Lions setting.

The DiPerna–Lions theory was further extended by Ambrosio [3] to vector-fields of
BV -regularity. However, there are certain situations in which a direct verification of
the renormalization property (3.5) seems to fail. One regards well-posedness results for
vector-fields, whose gradient is a singular integral of an L1 function [31], which is of
interest in certain problems in fluid dynamics. We revisit this setting later in this paper.

It is certainly surprising that the regularizing effect of diffusion does not rule out
non-uniqueness and that the DiPerna–Lions setting is both optimal for the advection
equation (κ = 0 in (3.1)) as well as the advection-diffusion equation (3.1), at least up to
a dimension-dependent gap.

DiPerna and Lions’ theory is extremely powerful and finds numerous applications to
various types of advection and kinetic equations. As a by-product, it provides qualitative
stability statements for the linear equation (3.1). For instance, considering two different
solutions with two different advection fields,

∂tθε + ∇ · (uεθε) = κ∆θε, ∂tθ + ∇ · (uθ) = κ∆θ,

we know that θε → θ when ε → 0 provided uε → u in some suitable norms. Similarly, for
vanishing diffusivities, κ → 0, solutions of the advection-diffusion equation (3.1) converge
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to the solutions of the transport equation

∂tθ + ∇ · (uθ) = 0. (3.6)

By nature, DiPerna and Lions’ theory cannot provide rates in these qualitative stability
statements. Besides establishing well-posedness, in particular uniqueness, those are
interesting from the point of view of an error analysis for numerical approximations. But
also for modeling purposes, quantitative results are crucial, for instance, with regard to
the zero-diffusivity limit κ → 0.

The purpose of this chapter is to derive stability estimates for the advection-diffusion
equation (3.1) both in the DiPerna–Lions setting and the slightly more singular setting
from [31].

The works [83, 84] provide a new quantitative approach to the advection equation
(5.1) in the DiPerna–Lions setting. The approach not only rediscovers most of the results
from the original paper [37] but also offers sharp stability estimates that extend to
situations inaccessible by the traditional renormalization approach. A typical estimate
in this context compares two distributional solutions θ1, θ2 ∈ L∞((0, T );Lq(Rd)) of the
Cauchy problem (5.1) corresponding to two different weakly compressible velocity fields
u1, u2 ∈ L1((0, T );Lp(Rd)), respectively, where 1/p+ 1/q = 1. Then it holds,

sup
t∈(0,T )

Dδ(θ1(t, ·), θ2(t, ·)) ≲ ∥∇u1∥L1(Lp)
(
∥θ1∥L∞(Lq) + ∥θ2∥L∞(Lq)

)
+ 1, (3.7)

provided that u1 ∈ L1((0, T );W 1,p(Rd)) and where δ = ∥u1 − u2∥L1(Lp) is the distance of
the velocity fields. The quantity Dδ(·, ·) on the left-hand side is a Kantorovich–Rubinstein
distance associated to a logarithmically increasing cost, originally arising in optimal
transportation theory and defined as

Dδ(µ, ν) = inf
π∈Π(µ,ν)

∫∫
Rd×Rd

log
( |x− y|

δ
+ 1

)
dπ(x, y). (3.8)

Here, µ, ν are finite measures on Rd such that µ[Rd] = ν[Rd] and Π(µ, ν) is the set of
couplings, i.e., measures on Rd × Rd such that π[A× Rd] = µ[A] and π[Rd ×A] = ν[A]
for all measurable A ⊂ Rd. The parameter δ > 0 here plays a crucial role because it can
be understood as the rate of convergence between the two densities θ1, θ2 in terms of
some parameter (the L1((0, T );Lp(Rd)) distance between u1 and u2 in this case). See
Section 2.2 for more details about this topic and related optimal transport distances.

The first version of the stability estimate (3.8) was introduced in [18], and we shall
comment briefly on its origin. The fact that there are logarithmic distances appearing
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is not really surprising since they are already present at the level of the flow. Consider
the ODE associated to the transport equation without diffusion, that is the Lagrangian
setting, as the equation for the flow ϕt : Rd → Rd with t ∈ (0, T ),{

∂tϕt = ut ◦ ϕt,
ϕ0 = id . (3.9)

Then, for two solutions of the flow equation (3.9) there is also the following logarithmic
stability estimate that can be verified straightforwardly,

log
(

|ϕ1
t (x) − ϕ2

t (x)|
δ

+ 1
)

≲ ∥∇u1∥L1(L∞) + 1, (3.10)

provided that δ = ∥u1 − u2∥L1(L∞) and that u1 is Lipschitz. Analogous results in the
DiPerna–Lions setting for the non-diffusive case have been proved by Crippa and De
Lellis [29] if p > 1 by replacing the uniform bounds in the space variable by suitable
integral averages. Unfortunately, due to technical limitations, it is currently unclear
how to extend these optimal stability estimates to the case p = 1. There are, however,
non-optimal extensions of the Crippa–De Lellis theory to the case p = 1 by Jabin [55] and
to lower regular vector fields, namely vector fields whose gradient is given by a singular
integral of an L1 function, by Bouchut and Crippa [15].

The ordinary differential equation of the flow (3.9) can be related to the transport
equation (5.1) through the method of characteristics,

θ(t, ·) = (ϕt)#θ
0,

and therefore the existence of an analogy between (3.7) and (3.10) is not unexpected.
The stability estimates for the transport equation [83, 84] turned out to be quite

flexible. There are actually many applications for which the optimal estimate plays a
crucial role, for example in coarsening and mixing problems [18, 75, 82, 85] or when
studying error estimates for numerical approximations [79, 80]. Moreover, stability
estimates are successfully extended to certain settings, in which renormalization in the
sense of DiPerna and Lions could not be established directly [25, 31]. As a consequence,
new well-posedness results are proven. In the stochastic setting, (sub-optimal) stability
estimates were derived in [44, 61].

In this chapter we intend to generalize these optimal stability estimates to transport
equations with diffusivity, i.e., κ > 0. While the regularizing effect of the diffusion might
on a qualitative level indicate that estimates holding for the transport equation (5.1) carry
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over to the advection-diffusion equation (3.1), the adaptation of the mathematical proofs
is not straightforward. As it turns out, our analysis is limited to advection-diffusion
equations with constant diffusivities, while qualitative results are available for more
general diffusions [45, 59, 60]. Nonetheless, these estimates are an important contribution
to the existing theory. For instance, optimal bounds on convergence rates of numerical
approximations become accessible for the first time in the DiPerna–Lions setting, since
it is addressed in [71] and presented here in Chapter 4. Moreover, the new bounds are
potentially applicable in the study of mixing problems in fluid dynamics, see also [82, 85]
for related work. In addition, our estimate extends the existing well-posedness theory for
(3.1) to fluids with an L1 vorticity, ∇ × u ∈ L1, which are of relevance, for instance, in
the study of the 2D Euler and Navier–Stokes equations [24, 31, 73].

We finally mention that quantitative estimates on advection-diffusion equation were
also obtained in the recent works [20, 85]. These, however, focus on quantifying the
vanishing diffusivity limit with applications to mixing.

The chapter is organized as follows: In the next section, Section 3.2, we state the
precise definitions and present and discuss our main results. In Section 3.3, we present
the proof of our general stability estimate in Theorem 3.1. The final Section 3.4 contains
a uniqueness result for vector fields with L1 vorticites, Theorem 3.2.

3.2. Main results

Our first main result of this chapter concerns a stability estimate for the advection-
diffusion equation (3.1) using the optimal transportation distance (3.8). For this, we are
considering precisely the DiPerna–Lions setting [37] that we introduced before, that is,
for the velocity field, we impose Sobolev regularity in the spatial variable,

u ∈ L1((0, T );W 1,p(Rd)) for some p ∈ (1,∞], (3.11)

while for the initial datum, we demand some integrability,

θ0 ∈ (L1 ∩ Lq)(Rd) with q > 1 such that 1
p

+ 1
q

≤ 1. (3.12)

Working in the full space requires to suppose some additional decay properties, for
instance, in order to ensure that the logarithmic Kantorovich–Rubinstein norms Dδ(θ0)
are finite for any finite δ. We achieve this by additionally assuming that θ0 has finite
first moments, ∫

Rd
|x| |θ0(x)| dx < ∞. (3.13)
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In this setting, it can be established that (smooth) solutions have L1 temporal-spatial
gradients as will be outlined in Remark 3.1 below. On bounded domains, the latter is
always true as a consequence of the a priori estimates in (3.4).

Let us now present the precise statement.

Theorem 3.1. Let u1 and u2 be two vector fields satisfying (3.11), and let θ0
1 and

θ0
2 be two initial data such that (3.12) holds. Let κ1 and κ2 be two positive constants.

Then, for any two distributional solutions θ1, θ2 ∈ L∞(L1 ∩Lq) to the advection-diffusion
equation (3.1) corresponding to κ1, u1, θ0

1 and κ2, u2, θ0
2, respectively, which satisfy

θ1, θ2 ∈ L1(W 1,1), the following stability estimate holds

sup
0≤t≤T

Dδ(θ1, θ2)(t) ≲ 1 + Dδ(θ0
1, θ

0
2) +

∥u1 − u2∥L1(Lp) + |κ1 − κ2| ∥∇θ2∥L1(L1)
δ

. (3.14)

It is not difficult to see that the stability estimate implies uniqueness. Indeed, suppose θ1
and θ2 are two solutions to the advection-diffusion equation with the same velocity, initial
data, and diffusivity constant. In that case, the right-hand side becomes independent of δ
and letting δ → 0; the left-hand side would blow up except if both solutions are identical.
The argument could be made rigorous, for instance, by a straightforward application of
Lemma 2.1 below, and we will elaborate on this principle in the proof of Theorem 3.2.
We thus recover the uniqueness results for distributional solutions from the original paper
by DiPerna and Lions [37] in a new quantitative way.

The implicit constant in the stability estimate (3.14) depends on the L∞(L1) and
L∞(Lq) norms of both solutions, but only on the L1(Lp) norm of one of the velocity
gradients and the L1(L1) norm of one of the solutions gradients. Consequently, it would
be enough to assume such regularity for one of the vector fields and one of the solutions,
and we would get an estimate on the distance between the unique solution and a non-
unique approximant. Furthermore, our analysis applies also to the situation where one
of the diffusivity constants depends on x, in which case the modulus of the difference of
the diffusivity constants needs to be replaced by ∥κ1 − κ2(x)∥L∞ .

Because Kantorovich–Rubinstein distances metrize weak convergence, cf. Theorem 7.12
in [94], the result of Theorem 3.1,

sup
0≤t≤T

Dδ(θ(t, ·), θn(t, ·)) ≲ Dδ(θ0, θ0
n) + 1 +

∥u− un∥L1(Lp) + |κ− κn|
δ

,

cf. (3.14), can be considered as an estimate on the rates of weak convergence for the
advection-diffusion equation for three types of approximations: The convergence of
solution sequences corresponding to converging sequences of initial data θ0

n → θ0, velocity
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fields un → u and diffusivity constants κn → κ. Here, an interesting feature is that the
rate of convergence is already incorporated into the distance function, and it is given by
the smallest δ = δn for which the right-hand side is finite, i.e.,

Dδn(θ0, θ0
n) ≲ 1, ∥u− un∥L1(Lp) ≲ δn, |κ− κn| ≲ δn. (3.15)

A setting in which all three of the above errors occur is the numerical approximation
of (3.1), which we study in a parallel work in [71]. Indeed, a finite volume scheme
introduces three discretization errors on the level of the initial datum, the velocity field
and due to numerical diffusion also on the level of the diffusivity constant. The latter
observation motivates the investigation of the stability in the limit κn → κ > 0. Moreover,
for a finite volume discretization of a Sobolev vector field u on a mesh of size 1/n, the
rate δn = 1/n in (3.15) is shown to be optimal [71].

The numerical application also highlights the need to work with weak norms, since
if θ0

n denotes a discretization of a merely integrable initial datum θ0 on a mesh of size
1/n, the approximation is converging weakly with rate 1/n, see, e.g., [79, 80] in the
case of a finite volume approximation, but there is no rate of convergence in any strong
Lebesgue norm. Therefore, in order to estimate the approximation error for numerical
schemes for the advection-diffusion equation in the DiPerna–Lions setting, it is necessary
to choose distances which metrize weak convergence such a negative Sobolev norms or
Kantorovich–Rubinstein distances. For us, this is the main motivation for the derivation
of Theorem 3.1.

Stability estimates for this type of perturbations are derived in the Lagrangian setting,
which correspond here to stochastic differential equations, in [97], based on the ODE
stability obtained by Crippa and De Lellis in [29]. In the Eulerian setting, similar
results are derived by Li and Luo [61], building on the stability theory for advection
equations developed in [83, 84]. In all these works, the authors obtain only the suboptimal√

|κn − κ| error by treating the diffusion as a perturbation to the advection.
In the present chapter, our objective is to improve the rate of weak convergence from√
|κn − κ| to |κn−κ|, in order to estimate optimally the numerical error induced by finite

volume schemes for the advection-diffusion equation, cf. [71]. The improvement from
“exponent 1/2 convergence” to “exponent 1 convergence” is well-known by numerical
analysts who study numerical schemes for advection-diffusion equations in a more regular
setting, see e.g. [43, Chapter 4]. It is a consequence of the smoothing effect of diffusion,
which is best understood if we neglect the advection for a moment: In this case, the zero-
diffusivity limit corresponds to the convergence of smooth solutions to its rough initial
configuration, while in the case of positive diffusivity, smooth solutions are approximated.
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Besides the indication of optimality in the numerical application, the following simple
example vaguely indicates that our findings are optimal. For simplicity, we consider the
one-dimensional case only and a Dirac function as initial datum. Moreover, we trade the
logarithmic Kantorovich–Rubinstein distance for the Wasserstein distance W1, see (2.8)
below, because computations here can be made more explicit.

Example 3.1. Suppose that θ1 and θ2 denote the one-dimensional heat kernels corres-
ponding to diffusivities κ1 > κ2 > 0. Then it holds

t|κ1 − κ2|
√
κ1 + √

κ2
≲W1

(
θ1(t, ·), θ2(t, ·)

)
.

Indeed, since the Wasserstein distance is the supremum over all Lipschitz functions
ψ(x) with Lipschitz constant bounded by 1, cf. (2.8) below, we can consider the specific
function ψ(x) = |x| to produce an explicit lower bound. Then, by means of the change
of variables x = 2

√
tκiy for i = 1, 2 we obtain

W1(θ1(t, ·), θ2(t, ·)) ≥
∫
Rd

(θ1(t, x) − θ2(t, x))ψ(x) dx

= 1
(4πκ1t)d/2

∫
Rd

|x|e− |x|2
4κ1t dx− 1

(4πκ2t)d/2

∫
Rd

|x|e− |x|2
4κ2t dx

= 2
√
t

πd/2 (√κ1 −
√
κ2)

∫
Rd

|y|e−|y|2 dy ≳

√
t

√
κ1 + √

κ2
(κ1 − κ2).

Of course, despite the fact that the Kantorovich–Rubinstein distance Dδ and the
Wasserstein distance W1 both metrize weak convergence, we are aware of the fact that
they are not equivalent and thus the actual rate of convergence might be different. We have
the one-sided estimate Dδ ≤ W1/δ which follows from linearizing the logarithm. However,
the opposite estimate, that would be desirable here, does not hold true. Moreover, also
by direct calculations, it is not clear to us how to extend the example to the Dδ distance.

Let us briefly comment on the vanishing viscosity limit κn → 0. While strong
convergence can be easily established, simple examples show that without imposing
additional regularity on the initial datum, there cannot be a convergence rate [84].
To obtain rates of strong convergence very mild (e.g. logarithmic Sobolev) regularity
assumption on the initial datum are sufficient [20, 14, 66]. In comparison, the optimal
rate of weak convergence is of the order

√
κ, as established in [83]. This limit also plays a

role in the analysis of numerical approximations for the purely advective equation, κ = 0,
see [79, 80].

We finally remark on our hypotheses in Theorem 3.1. For initial data in (3.12) and

30



Chapter 3. Stability results for distributional solutions with rough vector fields

velocity fields in (3.11), the existence of distributional solutions in L∞(L1 ∩ Lq) is easily
established with the help of the a priori estimates in (3.4) via smooth approximation,
provided that the velocity field satisfies the weak compressibility condition in (3.3). In
the following remark, we comment on the gradient condition.

Remark 3.1. The regularity assumption ∇θ ∈ L1(L1) that is assumed in Theorem 3.1 is
satisfied for finite entropy solutions as long as the velocity verifies the weak compressibility
condition in (3.3). Indeed, if θ is a nonnegative solution with∫

Rd
θ(t, x) log θ(t, x) dx ∈ R for all t ∈ [0, T ], (3.16)

a standard computation reveals that∫
Rd
θ(t) log θ(t) dx+κ

∫ t

0

∫
Rd

|∇θ|2

θ
dx dt ≤

∫
Rd
θ0 log θ0 dx+∥(∇·u)−∥L1(L∞)∥θ∥L∞(L1),

and thus, the Fisher information ∥θ−1|∇θ|2∥L1 is integrable in time. Moreover, by
Hölder’s inequality, we obtain∫ t

0
∥∇θ∥2

L1 ds ≤
∫ t

0
∥θ∥L1∥θ−1|∇θ|2∥L1 ds ≤ ∥θ∥L∞(L1)

∫ t

0
∥θ−1|∇θ|2∥L1 ds,

which is finite by (3.4), (3.16), and the above estimate on the entropy. We easily deduce
that ∇θ ∈ L1(L1) on finite time intervals, such that the last term in the right hand side
of (3.14) can be estimated by

|κ1 − κ2| ∥∇θ2∥L1(L1)
δ

≲
|κ1 − κ2|
δ κ2

.

It remains to understand that in the setting (3.3), (3.11), (3.12), (3.13), solutions do
indeed have finite entropy for finite times (3.16). An upper bound is provided by the
elementary estimate r log r ≲ r+ rq for any r > 0 and the integrability assumptions on θ.
For the lower bound, we first notice that the moment bound in (3.13) is propagated in
time. In fact, since θ0 ∈ L1 by assumption, the homogeneous weight |x| in (3.13) can be
replaced by the smoother

√
1 + |x|2, and we have the estimate∫

Rd

√
1 + |x|2θ(t, x) dx ≲

∫
Rd

√
1 + |x|2θ0(x) dx+ ∥u∥L1(Lp)∥θ∥L∞(Lq) + κ∥θ∥L1 .

Now, since r log r ≳ −rα for any α ∈ (0, 1) and any r > 0, we conclude that the lower
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bound
∫
Rd
θ log θ dx ≳ −

∫
Rd
θα dx ≳ −

(∫
Rd

1√
1 + |x|2

α
α−1

dx
)1−α (∫

Rd

√
1 + |x|2 θ dx

)α

is finite as long as α > d
d+1 .

We complete the discussion of Theorem 3.1 with a comment on the integrability
restriction on the velocity gradient in (3.11). A crucial step in the derivation of the
stability estimate is controlling the advection term via an argument that was introduced
by Crippa and De Lellis in [29]. The argument makes use of the Hardy–Littlewood
maximal function and exploits its continuity in Lp spaces for p > 1. The restriction in
(3.11) relies precisely on this limitation. See Section 3.3 for details.

In our second theorem, that we shall motivate in the following, we use a suitable
extension of the Crippa–De Lellis method to vector fields whose gradient is given by a
singular integral of an L1 function. A typical example of such a vector field is the velocity
field that is obtained from an L1 vorticity with the help of the Biot–Savart law.

The precise setting is as follows. We assume that the velocity components u1, . . . , ud
have kernel representations,

ui = ki ∗ ωi, (3.17)

for any i ∈ {1, . . . , d}, where the generalized vorticity components are merely integrable,

ωi ∈ L1((0, T );L1(Rd)), (3.18)

and where the kernels ki are such that any of its derivatives ∂jki is a singular kernel.
More precisely, we suppose that

(k1) k ∈ S ′(Rd), where S ′(Rd) is the dual of the Schwartz space;

(k2) k|Rd\{0} ∈ C2(Rd \ {0});

(k3) for α ∈ Nd0 with |α| ≤ 2 it holds

|Dαk(x)| ≲ 1
|x|d−1+|α| , ∀x ̸= 0;

(k4) it holds ∣∣∣∣∣
∫
R1<|x|<R2

∇k(x) dx
∣∣∣∣∣ ≲ 1 for every 0 < R1 < R2 < ∞.
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Under these conditions, the velocity field only lives in a weak Lebesgue space globally in
Rd, see Lemma 3.2 below. For mathematical convenience, we will enforce the slightly
stronger condition

u ∈ Lp,∞((0, T ) × Rd), (3.19)

for some p > 1. For the above mentioned applications in fluid dynamics, such a condition
is always satisfied. We recall that weak Lebesgue spaces Lp,∞ can be defined on a measure
space (X,µ) via the quasi-norm

∥f∥Lp,∞(µ) = sup
λ>0

(λpµ({x ∈ X : |f(x)| > λ}))1/p , (3.20)

for any measurable f : X → R. In the case p = ∞, we adopt the convention L∞,∞ = L∞.
Notice that ∥ · ∥Lp,∞ is not a norm since it does not verify the triangle inequality. Also
recall that there is an embedding Lp ⊂ Lp,∞ with ∥f∥Lp,∞ ≤ ∥f∥Lp for every f ∈ Lp.

As our goal is to derive a full well-posedness theorem, and not only a uniqueness result,
we shall, in addition, assume that the velocity field satisfies the weak compressibility
condition (3.3).

Finally, we work with with initial datum that are integrable and bounded,

θ0 ∈ (L1 ∩ L∞)(Rd), (3.21)

and that have finite first moments, i.e., (3.13) holds.
With this list of assumptions, we can state our second main result.

Theorem 3.2. Let u be a velocity field satisfying (3.17), (3.18), (3.19), and (3.3), and
let θ0 be an initial datum verifying (3.21) and (3.13). Then the Cauchy problem (3.1)
has a unique distributional solution θ(t, x) in the class L∞((0, T ); (L1 ∩ L∞)(Rd)) with
∇θ ∈ L1((0, T ) × Rd).

A corresponding result on uniqueness for the transport equation (5.1) was previously
derived in [31], which in turn builds up on the Lagrangian setting considered in [15].
Here, we develop an analogous theory for the diffusive case κ > 0. The result is, of
course, not unexpected since the diffusive equation is usually considered to produce
even smoother solutions. However, we are currently not aware of any techniques, apart
from those developed here, in which such a result can be established. Moreover, we are
presently unable to produce results in more general settings, for instance, for non-constant
diffusivities.

The new uniqueness result in Theorem 3.2 has potential applications in the study of
the inviscid limit for the two-dimensional Navier–Stokes equations with rough forcing.
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We believe that thanks to our present contribution, the recent results in [73, 24] can be
extended to such an interesting setting.

Finally, in Theorem 3.2 we add a proof of existence that is based on classical techniques.
Assumptions on the advection field itself and the weak compressibility assumption are
only used to establish the existence part.

3.3. Optimal stability results in the DiPerna–Lions setting

Next in order, we will introduce a first tool that is essential in the proof of Theorem 3.1.
It is based on the Hardy–Littlewood maximal function operator M , which is a central tool
from the Calderón–Zygmund theory defined for any measurable functions f : Rd → R by

Mf(x) = sup
R>0

1
|BR(x)|

∫
BR(x)

|f(z)| dz. (3.22)

The operator is continuous from Lp to Lp if p ∈ (1,∞], hence ∥Mf∥Lp ≲ ∥f∥Lp , see [87]
for details. Moreover with the maximal function operator one can find bounds for the
difference quotients by using Morrey-type inequalities, namely, for almost any x, y ∈ Rd

it holds
|f(x) − f(y)|

|x− y|
≲M(∇f)(x) +M(∇f)(y). (3.23)

A proof of the continuity of the Morrey-type estimate can be found in [42]. The estimate
in Lemma 3.1 below resembles the one in [83, Lemma 3], but here we adapt the setting
and the notation to make it more useful for our purpose.

Lemma 3.1. Let p ∈ (1,∞] and q ∈ [1,∞) such that 1/p+ 1/q = 1. Let η1, η2 ∈ L1 ∩Lq

be densities of equal mass, i.e.
∫
Rd η1 =

∫
Rd η2, and let σ ∈ Π(η1, η2) be a coupling with

marginals η1 and η2. Then for any integrable function u with ∇u ∈ Lp, it holds∫∫
Rd×Rd

|u(x) − u(y)|
|x− y|

dσ(x, y) ≲ (∥η1∥Lq + ∥η2∥Lq )∥∇u∥Lp . (3.24)

Proof. First, the statement is trivial if p = ∞ since u is Lipschitz and we arrive straight-
forwardly to the result of the lemma. Now, let p ∈ (1,∞). By means of the Morrey-type
inequality (4.30) and using the marginal conditions for the measure σ(x, y) we obtain∫∫

Rd×Rd

|u(x) − u(y)|
|x− y|

dσ(x, y) ≲
∫∫

Rd×Rd
(M(∇u)(x) +M(∇u)(y)) dσ(x, y)

=
∫
Rd
M(∇u)(x)η1(x) dx+

∫
Rd
M(∇u)(y)η2(y) dy.
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Then by Hölder inequality and by the continuity of the maximal operator from Lp to Lp
we deduce the statement of the Lemma. ■

Observe that this result can only be applied when ∇u ∈ Lp with p > 1. The limit case
where ∇u is a singular integral of an L1 function, that will be of interest in the next
section, has to be dealt more carefully and requires some more elaborate tools from the
Calderón–Zygmund theory.

Proof of Theorem 3.1. We consider the dual setting of the Kantorovich–Rubinstein dis-
tance between the solutions θ1 and θ2. By Lemma 2.2 we can write and set

d

dt
Dδ(θ1, θ2) =

∫
Rd

∇ζt · (u1θ1 − u2θ2) dx−
∫
Rd

∇ζt · (κ1∇θ1 − κ2∇θ2) dx

=
∫
Rd

∇ζt · (u1θ1 − u2θ2) dx− κ1

∫
Rd

∇ζt · (∇θ1 − ∇θ2) dx

+ (κ2 − κ1)
∫
Rd

∇ζt · ∇θ2 dx

=: Θ1(t) + Θ2(t) + Θ3(t). (3.25)

We prove that the individual terms are controlled as follows

Θ1(t) ≲ ∥∇u1∥Lp + ∥u1 − u2∥Lp

δ
; (3.26)

Θ2(t) ≤ 0; (3.27)

Θ3(t) ≤ |κ2 − κ1|
δ

∥∇θ2∥L1 . (3.28)

Before turning to the proofs of these bounds, we can straightforwardly conclude the proof
of Theorem 3.1. Indeed, inserting the bounds (3.26), (3.27) and (3.28) into (3.25) imply
after integrating over (0, t) for any 0 ≤ t ≤ T the stability estimate

Dδ(θ1(t, ·), θ2(t, ·)) − Dδ(θ1(0, ·), θ2(0, ·)) ≲ ∥∇u1∥L1(Lp) +
∥u1 − u2∥L1(Lp)

δ

+ |κ1 − κ2|
δ

∥∇θ2∥L1 ,

which is what we aimed to prove.
Proof of Estimate (3.26). For the first term Θ1(t) we will use the dual representation

of the optimal transportation distance. Using the properties of the Kantorovich potential
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ζt and the marginal conditions of the optimal transport plan, it holds

Θ1(t) =
∫
Rd

∇ζt · (u1θ1 − u2θ2) dx

=
∫∫

Rd×Rd
(∇ζt(x) · u1(x) − ∇ζt(y) · u2(y)) dπt(x, y)

=
∫∫

Rd×Rd

1
|x− y| + δ

x− y

|x− y|
· (u1(x) − u2(y)) dπt(x, y),

where πt is the optimal transport plan in Π((θ1(t) − θ2(t))+, (θ1(t) − θ2(t))−). We now
separate the gradient term from the error term,

|Θ1(t)| ≤
∫∫

Rd×Rd

|u1(x) − u1(y)|
|x− y|

dπt(x, y) + 1
δ

∫∫
Rd×Rd

|u1(y) − u2(y)| dπt(x, y).

For the difference quotients in the first term, we apply Lemma 3.1. Regarding the second
term, we can use the marginal conditions and the Hölder inequality,

1
δ

∫∫
Rd×Rd

|u1(y) − u2(y)| dπt(x, y) = 1
δ

∫
Rd

|u1 − u2|(θ1 − θ2)− dy ≤ ∥u1 − u2∥Lp

δ
∥θ2∥Lq .

All in all, we have established (3.26).
Proof of Estimate (3.27). The control of Θ2(t), the second term in (3.25), is based on

a discretization approach and hence we introduce finite difference quotients. Assume
v : Rd → R is a locally summable function, then the ith difference quotient with 1 ≤ i ≤ d

of size h > 0 at x ∈ Rd is given by

Dh
i v(x) = v(x+ hei) − v(x)

h
. (3.29)

We also make use of these quotients to approximate the Laplacian by the standard three
point stencil

∆hv(t, x) :=
d∑
i=1

−D−h
i Dv

i θ(t, x) = 1
h2

d∑
i=1

(v(x+ hei) − 2v(x) + v(x− hei)) .

We follow a technique inspired from [46] consisting of a convenient rearrangement of the
terms involved thanks to a discretization of the spatial derivatives. Let us take h > 0
sufficiently small and write the finite differences approximation of the Laplacian using
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the difference quotients to arrive at a discretized analog of Θ2 given for all t ∈ (0, T ) by

1
κ1

Θh
2(t) =

∫
Rd
ζt(x) ∆hθ1(t, x) dx−

∫
Rd
ζt(x) ∆hθ2(t, x) dx

= 1
h2

∫
Rd
ζt(x)

d∑
i=1

(
θ1(t, x+ hei) − 2θ1(t, x) + θ1(t, x− hei)

)
dx

− 1
h2

∫
Rd
ζt(x)

d∑
i=1

(
θ2(t, x+ hei) − 2θ2(t, x) + θ2(t, x− hei)

)
dx.

Since θ1, θ2 ∈ W 1,1 and ζ ∈ W 1,∞, we have that

Θ2(t) = lim
h→0

Θh
2(t),

and thus, it is enough to estimate Θh
2 instead of Θ2.

In order to estimate Θh
2 , we apply a convenient changes of variables zi = x+ hei and

yi = x− hei for all 1 ≤ i ≤ d to arrive at

1
κ1

Θh
2(t) = 1

h2

∫
Rd

(θ1(t, x) − θ2(t, x))
d∑
i=1

(
ζt(x+ hei) − 2ζt(x) + ζt(x− hei)

)
dx,

and exploring to the optimality of ζt therefore now ζt,zi and ζt,yi in the dual formulation
of the Kantorovich–Rubinstein distance Dδ(θ1, θ2), we obtain

h2

κ1
Θh

2(t) ≤ −2dDδ(θ1, θ2) + dDδ(θ1, θ2) + dDδ(θ1, θ2) = 0,

which proves (3.27).
Proof of Estimate (3.28). Finally, for Θ3(t) we can use again that ζt is a Lipschitz

function with Lipschitz constant bounded by ∥∇ζt∥L∞ ≤ 1/δ, so we arrive at (3.28). ■

3.4. Uniqueness with vector fields whose gradient is a singular
integral of an integrable function

In this section, we are going to deal with the existence and uniqueness problem for the
advection-diffusion equation (3.1) stated in Theorem 3.2. Before turning to its proof, we
briefly verify that the velocity fields considered here belong indeed to a weak Lp space,
globally in space. Along this section, we will denote by Ld the d−dimensional Lebesgue
measure.
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Lemma 3.2. Let u be given by (3.17) with ω ∈ L1(Rd) and k satisfying (k1)–(k4), then
it holds that

u ∈ Lp,∞
(
Rd
)

for p = d

d− 1 .

Our assumption in (3.19) is a little bit stronger than what is implied by (3.18), but it
falls into the class of velocity fields that are, for instance, induced by L∞(L1) vorticity
solutions to the Euler equations as considered in [31].

The result is a classical result from harmonic analysis. We provide a short elementary
proof for the convenience of the reader.

Proof. By rescaling ω, we may without loss of generality assume that ∥ω∥L1 = 1. In view
of the assumptions on the velocity field, we have the pointwise estimate

|u(x)| ≲
∫
Rd

|ω(y)|
|x− y|d−1 dy.

Given some radius R > 0 that we will fix later, we now decompose the integral into a
bounded and an integrable part,

|u(x)| ≲
∫
BR(x)

|ω(y)|
|x− y|d−1 dy +

∫
BR(x)c

|ω(y)|
|x− y|d−1 dy

≤
(
χBR(0)

1
| · |d−1

)
∗ |ω|(x) + 1

Rd−1 .

(3.30)

An integral bound on the first term is obtained via an elementary computation that is
based on Young’s inequality,∥∥∥∥(χBR(0)

1
| · |d−1

)
∗ ω
∥∥∥∥
L1

≤
∥∥∥∥χBR(0)

1
| · |d−1

∥∥∥∥
L1

∥ω∥L1 ≲ R. (3.31)

Here, we do not keep track of the dependence of constants on ω.
In order to estimate the weak Lp norm, we let λ be arbitrarily given and suppose that

λ < |u(x)|. Then we have by (3.30) for some R such that λ ∼ R1−d ,

cλ ≤
(
χBR(0)

1
| · |d−1

)
∗ |ω|(x),

for some small c, and thus,

Ld+1({|u| > λ}
)

≤ Ld+1
({

χBR(0)
1

| · |d−1 ∗ |ω| > cλ

})
≲

1
λ

∥∥∥∥(χBR(0)
1

| · |d−1

)
∗ |ω|

∥∥∥∥
L1
.
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As a consequence of (3.31) and the above choice of R, we deduce that

λpLd+1({|u| > λ}
)
≲ λp−1− 1

d−1 .

Choosing p as in the statement of the lemma, we see that the right-hand side is in fact
independent of λ and so is the supremum in λ, which yields the desired bound. ■

Towards a proof of the uniqueness result from Theorem 3.2, we will have to establish a
suitably adapted version of the stability estimate in Theorem 3.1.

Proposition 3.1. Under the assumptions of Theorem 3.2, let θ ∈ L∞((0, T ); (L1 ∩
L∞)(Rd)) be a solution of (3.1) with

∫
Rd θ0 = 0 and θ ̸≡ 0. Then for every ε > 0 there

exists a constant Cε > 0 such that for every δ > 0 it holds

sup
0≤t≤T

Dδ(θ(t, ·)) ≲ Dδ(θ0) + ε∥θ∥L1

1 + log

 1
εδ

( ∥θ∥L1

∥θ∥L∞

)1− 1
p

∥u∥Lp,∞


+ Cε∥θ∥L∞(L2).

This estimate was derived earlier in the non-diffusive setting [31]. As the argument
in the present work is essentially a combination of the one therein and the one that we
proposed in order to establish Theorem 3.1, we will keep our presentation here short.

Regarding the proof, the main difference between the DiPerna–Lions setting considered
in the previous section and the one we deal with here is the failure of the maximal function
estimates. Instead of estimating difference quotients with the help of the Morrey-type
estimate in (4.30), the strategy here is to construct certain weighted maximal functions
which allow for the substitutive estimate

|u(t, x) − u(t, y)|
|x− y|

≲ G(t, x) +G(t, y) for all x, y ̸∈ Nt, (3.32)

where Nt is a negligible set, Ld(Nt) = 0, which exists for almost every time t, and
G : (0, T ) × Rd → R is a function which can be decomposed for every ε > 0 into a sum
G = G1

ε +G2
ε, where G1

ε and G2
ε are such that

∥G1
ε∥L1(L1,∞) ≤ ε, ∥G2

ε∥L1(L2) ≤ Cε. (3.33)

If ω ∈ L1(L1), it is proved in [15] that such a function exists and the constant Cε depends
not only on ε > 0 but also on the equi-integrability of ω. Therefore, this result would
not generalize to situations in which ω is simply a measure.
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We will not give any details about the construction of the function G in (3.32) and
(3.33). However, for the convenience of the reader, we provide here the full argument for
Proposition 3.1.

Proof of Propositon 3.1. As we are seeking the stability estimate analogous to the one
in Theorem 3.1, we start by computing the time derivative of the optimal transportation
distance. Denoting ζt the Kantorovich potential at time t, by Lemma 2.2 we have

d

dt
Dδ(θ(t, ·)) =

∫
Rd

∇ζt · u(t, x)θ(t, x) dx− κ

∫
Rd

∇ζt · ∇θ(t, x) dx.

Hence, by a similar analysis to the performed in Theorem 3.1, we obtain the following
estimate

sup
t∈(0,T )

Dδ(θ(t, ·)) ≤ Dδ(θ0) +
∫ T

0

∫∫
Rd×Rd

|u(t, x) − u(t, y)|
|x− y| + δ

dπt(x, t). (3.34)

In this case we cannot apply the Morrey inequality (4.30) as before. Nonetheless, we
might make use of the alternative theory developed for weak Lp spaces and apply the
inequalities (3.32) and (3.33). Therefore we can estimate pointwise the integrand in
(3.34) for almost every t ∈ (0, T ) and every x, y ∈ Nt, where Ld(Nt) = 0 by

|u(t, x) − u(t, y)|
|x− y| + δ

≲ min
{ |u(t, x)| + |u(t, y)|

δ
,G1

ε(t, x) +G1
ε(t, y)

}
+G2

ε(t, x) +G2
ε(t, y).

(3.35)

Notice that, since the marginals of the optimal transport plan πt are absolutely continuous
with respect to Ld, the pointwise estimate holds for almost every t ∈ (0, T ) and πt-almost
every (x, y) ∈ Rd × Rd.

To begin with, we take care of the first term in the right-hand side. We introduce this
first part of the estimate into (3.34) and split the terms as follows,∫ T

0

∫∫
Rd×Rd

min
{ |u(t, x)| + |u(t, y)|

δ
,G1

ε(t, x) +G1
ε(t, y)

}
dπt(x, y) dt ≤ I1 + I2,

where

I1 =
∫ T

0

∫∫
Rd×Rd

(
min

{ |u(t, x)|
δ

,G1
ε(t, x)

}
+ min

{ |u(t, y)|
δ

,G1
ε(t, y)

})
dπt(x, y) dt,

I2 =
∫ T

0

∫∫
Rd×Rd

(
min

{ |u(t, x)|
δ

,G1
ε(t, y)

}
+ min

{ |u(t, y)|
δ

,G1
ε(t, x)

})
dπt(x, y) dt.
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By means of the marginal condition for the optimal transport plan we have

I1 =
∫ T

0

∫
Rd

min
{ |u(t, x)|

δ
,G1

ε(t, x)
}

|θ(t, x)| dx dt.

In order to make the notation simpler, we write ψ = min{|u|/δ,G1
ε}. The main challenge

now comes from the fact that G1
ε can only be bounded in the weak space L1,∞ while u

in Lp,∞. Let us define the finite measure

dµ(t, x) = χ(0,T )(t)|θ(t, x)| d
(
L1 ⊗ Ld

)
in Rd+1 so that, since ψ is defined as a minimum, we can bound on the one hand

∥ψ∥L1,∞(µ) ≤ ∥G1
ε∥L1,∞(µ) ≤ ∥θ∥L∞∥G1

ε∥L1(L1,∞) ≤ ε∥θ∥L∞ (3.36)

and on the other hand by using (3.33) also

∥ψ∥Lp,∞(µ) ≤ 1
δ

∥u∥Lp,∞(µ) ≤ 1
δ

∥θ∥1/p
L∞∥u∥Lp,∞ . (3.37)

Now, using from Lemma 2.6 in [31] the interpolation inequality

∥ψ∥L1(µ) ≤ p

p− 1∥ψ∥L1,∞(µ)

1 + log

µ(Rd+1)1− 1
p ∥ψ∥Lp,∞(µ)

∥ψ∥L1,∞(µ)

 ,
and the monotonicity of the expression on the right-hand side in the L1,∞-norm, we find
for any θ ̸≡ 0 the bound

I1 = ∥ψ∥L1(µ) ≲ ε∥θ∥L∞

1 + log

 1
εδ

( ∥θ∥L1

∥θ∥L∞

)1− 1
p

∥u∥Lp,∞

 . (3.38)

The argument for I2 will be similar to the just performed estimates. To do so, we need
to prove that the estimates (3.36) and (3.37) hold also in the situation of I2. Recall the
characterization of the optimal transport plans through the measurable maps T and S,
introduced in Section 2.2, which together with the marginal condition give

I2 =
∫ T

0

∫
Rd

min
{ |u ◦ S|(t, y)

δ
,G1

ε(t, y)
}
θ−(t, y) dy dt

+
∫ T

0

∫
Rd

min
{ |u ◦ T |(t, x)

δ
,G1

ε(t, x)
}
θ+(t, x) dx dt.

41



Chapter 3. Stability results for distributional solutions with rough vector fields

The treatment of the two terms now is quite similar, therefore it would be enough to
focus on one of them, say the last one. Analogously to the estimate for I1, we define now
the function

ψ = min
{ |u ◦ T |

δ
,G1

ε

}
,

and the finite measure dµ(t, x) = χ(0,T )(t)θ+(t, x)dL1 ⊗ Ld on Rd+1. The first estimate
(3.36) remains valid without any change since it comes from assuming ψ ≤ G1

ε, that holds
true. For the second estimate (3.37), however, we need to take care of some details. On
the one hand, we have

∥ψ∥Lp,∞(µ) ≤ 1
δ

∥u ◦ T∥Lp,∞(µ),

and on the other hand, we have the relation θ− = T#θ
+, which implies

µ({|u ◦ T | > λ}) =
(
T#θ

+L1 ⊗ Ld
)

({|u| > λ}) =
(
θ−L1 ⊗ Ld

)
({|u| > λ}).

Therefore, we have

∥u ◦ T∥Lp,∞(µ) = sup
λ>0

(
λp
∫ T

0

∫
Rd
χ{|u◦T |>λ}θ

+(t, x) dx dt
)1/p

= sup
λ>0

(
λp
∫ T

0

∫
Rd
χ{|u|>λ}θ

−(t, x) dx dt
)1/p

≤ ∥θ∥1/p
L∞∥u∥Lp,∞ .

Hence the estimate (3.37) also holds for I2 and we arrive to the estimate (3.38) in this
case as well.

Finally, we can control the terms related to G2
ε in (3.35) by means of the marginal

conditions for the optimal transport plan and Hölder inequality,∫ T

0

∫
Rd

(G2
ε(t, x) +G2

ε(t, y)) dπt(x, y) =
∫ T

0

∫
Rd
G2
ε|θ| dt dx ≤ ∥θ∥L∞(L2)∥G2

ε∥L1(L2).

(3.39)
that is bounded since θ ∈ L∞(L2) by interpolation. Therefore we can plug the estimates
(3.38) and (3.39) into (3.35) and it yields the desired stability estimate. ■

From Proposition 3.1 it is easy to deduce uniqueness with the help of Lemma 2.1. It
remains to prepare for the proof of existence. We will establish existence by a standard
mollification-and-compactness procedure. For this, we provide an auxiliary lemma about
the convergence of the velocity fields in appropriate Lebesgue spaces that we present here
in a quantitative way. We believe this result is of independent mathematical interest.
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Lemma 3.3. Consider ωn, ω : Rd → Rd integrable functions all with the same total mass.
Assume that ∥ωn − ω∥L1(Rd) is bounded uniformly in n ∈ N. Let un = k ∗ ωn, u = k ∗ ω
with k satisfying (k1)–(k4), then for every s > 0 and any 1 ≤ p < d/(d− 1) it holds

∥un − u∥Lp(Bs(0)) ≲
(
s

d
pW1(ωn, ω)

) d−p(d−1)
d+p .

This lemma states that under a suitable convergence assumptions for ωn in L1(Rd)
we can control the Lploc(Rd) convergence of un in terms of the Wasserstein distance for
1 ≤ p < d/(d− 1). The most evident consequence of this lemma is the following result,
whose proof is now obvious.

Lemma 3.4. Under the same assumptions of Lemma 3.3, if W1(ωn, ω) → 0 as n → ∞,
then un converges to u locally in Lp(Rd), provided that 1 ≤ p < d/(d− 1).

Proof of Lemma 3.3. First, we show that ω ∈ L1(Rd) implies u ∈ Lploc(Rd). For this
purpose, it is convenient and enough to assume that ω is nonnegative density of mass
one, ∥ω∥L1 = 1. We choose s > 0 arbitrary, and derive by means of the Jensen inequality
applied with the measure ω(y)dy and Fubini’s theorem,∫

Bs(0)
|u|p dx ≲

∫
Bs(0)

(∫
Rd

ω(y)
|x− y|d−1dy

)p
dx ≲

∫
Bs(0)

∫
Rd

ω(y)
|x− y|p(d−1) dy dx

=
∫
Rd

(∫
Bs(0)

1
|x− y|p(d−1) dx

)
ω(y) dy ≲ sd−p(d−1)

provided that 1 ≤ p < d/(d− 1). In order to prove the strong convergence of (un)n∈N to
u in Lploc(Rd) we first study the pointwise difference un(x) − u(x). Let R > 0 be such
that k(z) is Lipschitz for all z ∈ BR(0)c, and define the cutoff functions ηR : Rd → [0, 1],
ηR ∈ C∞

c (Rd), ηR(x) = 1 for all x ∈ BR(0) and ηR(x) = 0 for all x ∈ B2R(0)c.
Then φ(x) = (1 − ηR)k(x) is a Lipschitz function with Lipschitz constant bounded by
∥∇φ∥L∞(Rd) ≲ R−d. Thus, we can write

un(x) − u(x) =
∫
Rd
k(x− y)[ωn(y) − ω(y)] dy

=
∫
Rd

(ηRk)(x− y)[ωn(y) − ω(y)] dy +
∫
Rd
φ(x− y)[ωn(y) − ω(y)] dy.

Since φ(x) is Lipschitz, the second term in the right hand side can be related to the
1-Wasserstein distance (2.8), provided ωn and ω are of the same total mass,∣∣∣∣∫

Rd
φ(x− y)[ωn(y) − ω(y)] dy

∣∣∣∣ ≲ 1
Rd

W1(ωn, ω).
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On the other hand, the remaining term can be bounded by∫
Rd

(ηRk)(x−y)[ωn(y)−ω(y)] dy ≲
∫
B2R(x)

1
|x− y|d−1 |ωn(y)−ω(y)| dy = (F2R∗|ωn−ω|)(x),

where the function Fr is defined as Fr(z) = |z|1−dχBr(0)(z) for any r > 0. Thus, for every
s > 0 it holds

∥un − u∥Lp(Bs(0)) ≲ ∥F2R ∗ |ωn − ω|∥Lp(Rd) + ∥R−dW1(ωn, ω)∥Lp(Bs(0)).

For the first term, we might use the Young’s convolution inequality so that we get

∥F2R ∗ |ωn − ω|∥Lp(Rd) ≤ ∥F2R∥Lp(Rd)∥ωn − ω∥L1(Rd) ≲ R
d−p(d−1)

p

given that ∥ωn − ω∥L1(Rd) is bounded uniformly in n ∈ N and that 1 ≤ p < d/(d − 1).
The second term on the right-hand side is the norm of a constant, thus

∥un − u∥Lp(Bs(0)) ≲ R
d−p(d−1)

p + s
d
pR−dW1(ωn, ω).

But we can optimize the bound in R > 0 to the effect that for all s > 0 it holds

∥un − u∥Lp(Bs(0)) ≲
(
s

d
pW1(ωn, ω)

) d−p(d−1)
d+p

. ■

We are now in the position to prove Theorem 3.2. In order to do so we will rely on the
hyperbolic tangent distance Db and Lemma 2.1 from Section 2.2, that is defined from
the cost function

c(z) = tanh(z).

Proof of Theorem 3.2. First of all, we want to give a sketch of an existence proof. On this
regard, we notice that distributional solutions are well-defined because ∇θ ∈ L1((0, T ) ×
Rd), see Remark 3.1, and because uθ ∈ L1((0, T ) × Rd). The letter follows from the
estimate

∥uθ∥L1 = ∥u∥L1(µ) ≤ p

p− 1∥θ∥
1− 1

p

L1 ∥u∥Lp,∞(µ) ≤ p

p− 1∥θ∥
1− 1

p

L1 ∥θ∥
1
p

L∞∥u∥Lp,∞ < +∞,

(3.40)
where the measure µ is defined by µ(t, x) = χ(0,T )(t)θ(x)L1 ⊗ Ld — we assume that
θ is nonnegative for convenience — and the first inequality is due to the embedding
Lp,∞(X,µ) ⊂ L1(X,µ) on a finite measure space (X,µ), see, e.g., Lemma 2.5 in [31].

Now, to prove existence, we will proceed by regularizing the velocity field and initial
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datum and then passing to the limit under the appropriate conditions. Denoting by ρε a
standard mollifier on Rd, we define ωε = ω ∗ ρε ∈ L1((0, T );C1

b (Rd)) and θ0
ε = θ0 ∗ ρε ∈

C1
b (Rd). Then, since u = k∗ω, we can also define uε = k∗ωε ∈ L1((0, T );C1

b (Rd)). There-
fore, by standard theory, we know that there exist a unique solution θε ∈ C((0, T );C1

b (Rd))
of the Cauchy problem{

∂tθε + ∇ · (uεθε) = κ∆θε in (0, T ) × Rd,
θε(0, ·) = θ0,ε in Rd.

Now we can use the elementary a priori estimates (3.4) and our assumptions on the initial
datum (3.12) in order to deduce that θε is bounded in L∞((0, T );Lq(Rd)) independently
of ε > 0 for every 1 ≤ q ≤ ∞. It follows that we can extract a subsequence (not
relabelled) that converges weakly-∗ to some function θ in L∞(Lq) for any q ∈ (1,∞], and
then by invoking some soft arguments, also in L∞(L1). Moreover, inspection of (3.1)
reveals that the time derivatives ∂tθε are bounded in L∞(H−s) for some s > 0, from
which we infer that that the convergence takes place in C0(w-Lq) for any q ∈ [1,∞],
where w-Lq(Rd) is the standard Lq space equipped with the weak topology. In view of
Lemma 3.4 and (3.13) and because Wasserstein distances metrize weak convergence, see
Theorem 7.12 in [94], the velocity fields uε are converging locally in any Lq space. As a
consequence, the product uεθε is convergent on compact sets, and thus, passing to the
limit in the distributional formulation of (3.1), see Definition 2.1, we find that θ solves
the advection-diffusion equation with velocity u and initial datum θ0.

The proof of the uniqueness relies on the stability estimate from Proposition 3.1.
Towards a contradiction, we assume that there is a solution θ(t, x) of the advection-
diffusion equation (3.1) with initial datum θ0 ≡ 0 and such that θ(t, x) ̸≡ 0, so that, in
particular, ∥θ∥L∞ > 0. Then we can write

sup
0≤t≤T

Dδ(θ(t, ·)) ≲ ε

[
1 + log

( 1
εδ

)]
+ Cε,

where the symbol ≲ now includes ∥θ∥L∞ , ∥θ∥L1 and ∥u∥Lp,∞ . Notice that if δ ∈ (0, 1/e)
it holds

1
| log δ|

[
1 + log

( 1
δε

)]
≤ 1 + | log δ| + | log ε|

| log δ| ≤ 2 + | log ε|,

and, therefore, we can choose a > 0 arbitrarily small and fix ε > 0 such that

ε

| log δ|

[
1 + log

( 1
δε

)]
≤ a

2 .
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Since ε > 0 and Cε > 0 are fixed now, we may choose δ ∈ (0, 1/e) small enough so that

Cε
| log δ| ≤ a

2 .

Combining the previous estimates, we find that

sup
0≤t≤T

Dδ(θ(t, ·)) ≲ a| log δ|.

Thus, since a > 0 was arbitrarily small, it holds

Dδ(θ(t, ·))
| log δ| → 0 as δ → 0.

To conclude, it only remains to notice that Lemma 2.1 with γ =
√
δ implies that

Db(θ(t, ·)) ≤ 2Dδ(θ(t, ·))
| log δ| +

√
δ∥θ(t, ·)∥L1(Rd)

for all δ > 0 small enough. In particular letting δ → 0 we get Db(θ(t, ·)) = 0 and since
Db(·) is a norm, it implies θ ≡ 0. This contradicts the hypothesis at the beginning of
the proof and since we found that the only solution of (3.1) with initial datum θ0 = 0 is
θ(t, x) = 0 almost every (t, x) ∈ (0, T ) × Rd, it yields the sought uniqueness. ■
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4. Error estimates for a finite volume
scheme with rough coefficients

This chapter is based on the article [71], which is a joint work with André Schlichting.
Large parts of it are reproduced verbatim.

Chapter summary

We study the implicit upwind finite volume scheme for numerically approxim-
ating the advection-diffusion equation with a vector field in the low regularity
DiPerna–Lions setting. That is, we are concerned with advecting velocity
fields that are spatially Sobolev regular and data that are merely integrable.
We prove that on unstructured regular meshes the rate of convergence of
approximate solutions generated by the upwind scheme towards the unique
solution of the continuous model is at least one. The numerical error is estim-
ated in terms of logarithmic Kantorovich-Rubinstein distances and provides
thus a bound on the rate of weak convergence.

4.1. Introduction

In this chapter we are concerned with a bounded domain D ⊂ Rd, a bounded time
interval (0, T ) and a positive constant diffusion coefficient κ > 0. Given vector field
u : [0, T ] × D → Rd, we study the evolution of a scalar quantity θ : [0, T ) × D → R
described by the Cauchy problem{

∂tθ + ∇ · (uθ) = κ∆θ in (0, T ) × D,
θ(0, ·) = θ0 in D, (4.1)

where θ0 is the initial configuration.
In addition we assume that there is no loss of mass across the boundary of the domain,

(κ∇θ − u) · n = 0 in (0, T ) × ∂D, (4.2)
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Chapter 4. Error estimates for a finite volume scheme with rough coefficients

where n = n(x) represents the outer unit vector normal to the boundary of the domain
on every point x ∈ ∂D. This assumption implies that solutions to the advection-diffusion
equation (4.1) conserve their mass in time,∫

Ω
θ(t, x) dx =

∫
Ω
θ0(x) dx for all t ∈ (0, T ).

In this context, well-posedness of renormalized solutions to the equation (4.1) is
obtained for Sobolev regular vector fields by DiPerna and Lions [37]. This new solution
concept is based on the least possible regularity such that the chain rule still holds,
providing qualitative stability and hence uniqueness results. We say a vector field u is in
the DiPerna–Lions setting if for some 1 < p ≤ ∞ it holds

u ∈ L1((0, T );W 1,p(D)) and (∇ · u)− ∈ L1((0, T );L∞(D)). (4.3)

For works explicitly handling diffusion in this regularity setting, see also [13, 45, ?].
Considering then θ0 ∈ Lq with q > 1 such that 1/p + 1/q ≤ 1, there is a unique

distributional solution to the advection-diffusion equation (4.1) with vector field in the
DiPerna–Lions setting such that

θ ∈ L∞((0, T );Lq(D)) ∩ L1((0, T );W 1,1(D)).

Such regularity for the solution to (4.1) can be straightforwardly derived from the
standard apriori estimate

1
q(q − 1)

d

dt
∥θ∥qLq + κ

∫
D

|θ|q−2|∇θ|2 dx ≤ 1
q

∥(∇ · u)−∥L∞∥θ∥qLq , (4.4)

with q > 1. Then one can see that the solution begin L∞((0, T );Lq(D)) is obtained by
integrating (4.4) and dropping the term with ∇θ so that we get

∥θ∥L∞(Lq) ≤ Λ1− 1
q ∥θ0∥Lq , (4.5)

where Λ = exp(∥(∇ ·u)−∥L1(L∞)) is the compressibility constant of the vector field. Since
we dropped the term with ∇θ in order to get (4.5), the estimate holds for both the
transport equation (κ = 0) and the advection-diffusion equation (κ > 0). However, the
presence of diffusion provides better regularity for the solution, which is obtained from
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the term involving ∇θ in (4.4) as

κ

∫ T

0

∫
D

|θ|q−2|∇θ|2 dx ds ≤ 1
q

( 1
q − 1 + Λq−1 log Λ

)
∥θ0∥qLq . (4.6)

This control over the gradient provides that the solution to (4.1) lives in L1((0, T );W 1,1(D))
(see the beginning of Section 4.3).

The main objective of this chapter is to develop (optimal) error estimates for an upwind
scheme on unstructured meshes based on a finite volume approximation of distributional
solutions to the advection-diffusion equation (4.1) when the vector field is in the DiPerna–
Lions setting. This result arises as a continuation of the works by Schlichting and Seis
[79, 80], where the authors study the upwind scheme for the transport equation, i.e.,
κ = 0, in a similar regularity setting. The addition of a diffusive term is not trivial
whatsoever, as we will explain in detail along the sections of this chapter. The main
result in [72, Theorem 1] provides the stability estimate in the presence of diffusion,
which will be a key ingredient for derivation of error estimates for the numerical scheme.
In the DiPerna–Lions setting, the stability for two solutions is measured with respect to
the optimal transport distance defined for any δ > 0 by

Dδ(µ1, µ2) = inf
π∈Π(µ1,µ2)

∫∫
D×D

log
( |x− y|

δ
+ 1

)
dπ(x, y). (4.7)

Here Π(µ1, µ2) represents the set of all transport plans between the measures µ1 and µ2.
We give a more in-depth contextualization and further explanation about these so-called
Kantorovich-Rubinstein distances or optimal transport distances in Section 2.2.

The result [72, Theorem 1] states that any two solutions θ1 and θ2 of the advection-
diffusion equation (4.1) with initial data θ0

1, θ0
2, vector fields u1, u2 and diffusion coefficients

κ1, κ2 respectively, satisfy

sup
0≤t≤T

Dδ(θ1(t), θ2(t)) ≲ Dδ(θ0
1, θ

0
2) + 1 +

∥u1 − u2∥L1(Lp) + |κ1 − κ2|∥∇θ2∥L1

δ
. (4.8)

The study of convergence rates for finite volume schemes for the advection-diffusion
equation is intimately related to the study of the diffusionless case, that was firstly
addressed by Kuznetsov [56]. For results about the mathematical theory and the
derivation of optimal error estimates with Lipschitz vector fields and regular initial data,
either BV or H1, see [34, 65]. On the DiPerna–Lions setting, the problem has not been
addressed until very recently with the work of Schlichting and Seis, first with Cartesian
meshes [79] and after with unstructured meshes [80].
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The study of numerical approximations for the advection equation with diffusion has
been of great interest along the last decades, from classical results with C1(D) vector
fields and Cartesian meshes [78] to less regular settings [93].

The novelty in our work is that we present error estimates for the finite volume scheme
for the advection-diffusion in the low regularity framework. Denoting by h the size of the
mesh and k to the time step, we get an O(h+

√
k) error bound as in the smooth setting.

We derive most of the results and estimates here working in the Eulerian setting for the
equation (4.1), that is, operating with the solution of the partial differential equation.
In previous works, mainly for the transport equation, the Lagrangian setting has been
considered instead, i.e., the characteristics associated with the equation. This provides a
probabilistic interpretation of the numerical scheme as a Markov chain on the mesh (see
[35, 79]). In this chapter, we need to use the Lagrangian setting to prove one estimate
related to the time-discretization of the vector field. Since we are dealing with a parabolic
equation, the characteristics are solutions to stochastic differential equation, for which
reason we include a short introduction to Lagrangian stochastic flows in Appendix A.1.

In addition, it is remarkable that working in a low regularity setting carries over a
substantial change in topology compared to the smooth setting. Here we quantify the rate
of weak convergence, following the spirit of previous works for the transport equation, e.g.
[35, 79, 80]. For Lipschitz vector fields instead, it is possible to derive bounds in strong
norms. However, for the DiPerna–Lions setting, we introduce the Kantorovich–Rubinstein
distance that metrize weak convergence and hence it is a natural tool for studying this
case, since only for those stability estimates are available [72].

In this work, we focus on the upwind finite volume scheme for linear advection, since it
is the easiest to analyze and has the needed stability properties. An interesting question
is, if the here presented proofs generalize to the analysis of structure preserving schemes
for singular aggregation-diffusion equations, like the ones studied for regular aggregation
in [36, 81].

This chapter is organized as follows: In Section 4.2 we present a precise definition of
the admissible meshes, the finite volume numerical scheme, and its properties together
with a presentation and a discussion of the main results. Section 4.3 contains all the
proofs related to the main result of this chapter. Finally, Appendix A.1 provides an
overview of stochastic Lagrangian flows on bounded domains, which is a needed tool to
estimate the error related to the time-discretization of the vector field.
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4.2. Setting and main result

4.2.1. Definition of the numerical scheme

In this section we present a formal and detailed definition of the upwind scheme that we
will use. To begin with, recall from [43] the definition of admissible meshes for the finite
volume discretization of advection-diffusion equations.

Definition 4.1 (Admissible meshes). Let D ⊂ Rd be an open, locally convex and bounded
set with C1,1 boundary. We say T is an admissible tessellation of D if it consists of a
finite family of cells or control volumes K ∈ T and a finite family of points {xK}K∈T ⊂ D
such that

• every control volume K ∈ T is a closed, connected and convex subset in D;

• the control volumes have disjoint interiors and satisfy D = ⋃
K∈T K;

• each cell is polygonal in the interior of D, in the sense that the interior boundary of
each cell ∂K \∂D is the union of finitely many subsets of D contained in hyperplanes
of Rd with strictly positive Hd−1-measure;

• the family of points {xK}K∈T satisfies xK ∈ K \ ∂D for all K ∈ T ;.

In general, see [43], the geometry of ∂D is restricted to the case in which it is polygonal
itself. However in our specific case, we need a construction of a stochastic Lagrangian
flow (see Appendix A.1), for which certain error terms can only be controlled on domains
satisfying a uniform exterior ball condition (4.11), for which a C1,1 boundary is a sufficient
condition. Since, we are working under a no-flow boundary condition (4.2), we can indeed
consider sufficiently smooth domains D such that Definition 4.1 holds and the numerical
cells are only polygonal inside of the domain D.

It is important to remark that the convexity requirement for the cells is needed in
our analysis in order to prove Lemma 4.10 invoking a specific construction, the Brenier
maps. Nonetheless we believe that this might not be strictly needed in general and one
could come up with an similar construction that allows some relaxation for the convexity
assumption.

A two dimensional example of two admissible control volumes is illustrated in Figure
4.1. We denote by L ∼ K whenever K and L are two neighbouring cells and we write
K |L to denote the common edge. If L ∼ K, we define dKL = |xL − xK | and nKL to
be the unit vector on K |L pointing in the direction xL − xK . In addition, abusing the
notation, we write |K |L| = Hd−1(K |L) the (d− 1)-dimensional Hausdorff measure of the
edge K ∩ L and |K| = Ld(K) the d-dimensional Lebesgue measure of a cell K ∈ T .
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dKL

K |L

K
L ∼ K

xK xL

Figure 4.1.: Example of admissible neighbouring control volumes

The mesh size h is defined to be the maximal cell diameter, h = maxK∈T diamK, and
hence it holds dKL ≲ h for all K ∈ T and L ∼ K. For the time discretization we call k
the time step such that there exists N ∈ N with T = kN and we adopt the convention
tj = jk for all 0 ≤ j ≤ N . For the sake of shorter notation, we write J0, NK to denote
the collection of numbers {0, 1, . . . , N}.

In addition it is required to consider some regularity assumptions for the boundary
of the domain and the mesh to ensure that, at least, the standard geometric constants
arising on the Poincaré and the trace inequalities do not depend on the size of the mesh.
Namely, it is needed that for every f ∈ W 1,1(K) ∩ C(K),

∥f∥L1(∂K) ≲ ∥∇f∥L1(K) + h−1∥f∥L1(K),

∥f − fK∥L1(K) ≲ h∥∇f∥L1(K),
(4.9)

uniformly in K ∈ T and h > 0. These are respectively the trace and Poincaré inequalities
and for a classical proof of these results we refer to [42, Sections 4.3 and 4.5]. We denote
by fK the average of f over the cell K, to be more specific fK = −

∫
K fdx. One direct

consequence of the trace estimate is the so-called isoperimetric property of the mesh, that
guarantees that every cell K of the tessellation has a volume of order hd and a surface of
order hd−1, and reads as follows

|∂K|
|K|

≲
1
h
. (4.10)

In Definition 4.1 we assumed the boundary of D to be C1,1, i.e. C1 with Lipschitz
derivative. This requirement is sufficient because with such regularity ∂D satisfies the
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uniform exterior ball condition: For some r0 > 0 and for all x ∈ ∂D it holds

∀y ∈ D \ {x} : x− y

|x− y|
· n(x) + 1

2r0
|x− y| ≥ 0. (4.11)

In order to define explicitly the numerical scheme that we are considering here, we first
need to approximate the initial datum. Since the finite volume scheme approximates
the solution by averaging on every cell, we can consider the discretization of the initial
datum in this way,

θ0
K = −

∫
K
θ0 dx (4.12)

and hence θ0
h(x) = θ0

K for every x ∈ K and every K ∈ T . Since the scheme considers
net fluxes across the cell faces, we define the discretized normal velocity from a control
volume K to a neighboring one L ∼ K by

unKL = −
∫ tn+1

tn
−
∫
K|L

u · nKL dHd−1 dt. (4.13)

Both unKL and θ0
K are well-defined thanks to the trace theorem for Sobolev vector fields,

i.e. (4.9). Notice that by definition the discretization of the velocity is antisymmetric
with respect to the control volumes, i.e. it holds unKL = −unLK , which is useful for many
calculations.

We define the finite volume scheme for the advection-diffusion equation (4.1) as

θn+1
K − θnK

k
+
∑
L∼K

|K |L|
|K|

(un+
KLθ

n+1
K − un−

KLθ
n+1
L ) + κ

∑
L∼K

|K |L|
|K|

θn+1
K − θn+1

L

dKL
= 0 (4.14)

for every n ∈ J0, N − 1K and K ∈ T . Therefore the approximate solution θk,h is defined
by

θk,h(t, x) = θnK for almost every (t, x) ∈ [tn, tn+1) ×K

for every n ∈ J0, N − 1K and K ∈ T . If n = 0 we directly define θ0
k,h = θ0

h.
Within the next section we show that this numerical problem is well-posed (see Lemma

4.1) and we will derive analogous stability estimate to (4.5) and (4.6) (see Lemma 4.2).
These results follow under the assumption that the time step verifies k ≤ kmax. The
definition of the maximal time step kmax follows a similar construction as in [16, 80],
where it is given depending on some α > 1 as the smaller number kmax = kmax(α) such
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that

q − 1
q

∫
I

∥(∇ · u)−∥L∞ dt ≤ α− 1
α

∀I ⊆ [0, T ) with |I| ≤ kmax(α). (4.15)

The constant α > 1 is used as a measure of how close the numerical solution θk,h is from
satisfying the a priori estimate (4.5). Indeed, we will see in Lemma 4.2 that the exponent
1 − 1/q on the compressibility constant is replaced by α(1 − 1/q) and thus α = 1 for
incompressible vector fields, i.e. if ∇ · u = 0.

4.2.2. Main result

The main result here presented concerns an estimate for the error generated by the
finite volume scheme (4.14) as an approximation of the advection-diffusion equation (4.1).
Without further ado let us recall the precise hypotheses we need for Theorem 4.1. First
of all we consider a vector field in the DiPerna–Lions setting for some p ∈ (1,∞]. Then
assume the initial datum is integrable with

θ0 ∈ Lq(D) with q ∈ (1,∞] such that 1
p

+ 1
q

≤ 1. (4.16)

Last, for the numerical analysis we need to consider bounded vector fields,

u ∈ L∞((0, T ) × D). (4.17)

Although this is not required for the derivation of the continuous stability estimates
(4.5)–(4.6), it is a standard and not very restrictive assumption for numerical experiments,
see for instance [80]. The main result therefore states as follows.

Theorem 4.1. Consider θ0, u and kmax such that (4.3), (4.15),(4.16) and (4.17) hold.
Consider an admissible tessellation of D that satisfies (4.9). Let θ be the unique distribu-
tional solution to (4.1)–(4.2) and for k ∈ (0,min{kmax, 1}) and h ∈ (0, 1) let θk,h be the
unique approximate solution given by the numerical scheme (4.14). Then, for any δ > 0
there holds

sup
0≤t≤T

Dδ(θ(t), θk,h(t)) ≲ 1 + h

δ
min

{
∥u∥∞

√
T

κ
,

√
T∥u∥∞
h

}
+

√
k

δ

(√
T∥u∥∞ +

√
κ
)
.

(4.18)

Here, Dδ(·, ·) defined as in (4.7), refers to a distance from the theory of optimal
transportation with a logarithmic cost. This particular distance is of great use for
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equations with rough coefficients because it metrizes weak convergence. Namely, if we
choose δ = h+

√
k then we get

θk,h ⇀ θ as k, h → 0

weakly with rate (at most) δ = h +
√
k, we elaborate more on the properties of the

Kantorovich–Rubinstein distance in Section 2.2.
The estimate (4.18) here is presented in such form to make explicit that it is a

generalization of the result for transport equations (κ = 0) in [80]. One can appreciate
that assuming κ > 0, Theorem 4.1 reads

sup
0≤t≤T

Dδ(θ(t), θk,h(t)) ≲ 1 + h∥u∥∞
δ

√
T

κ
+

√
k

δ

(√
T∥u∥∞ +

√
κ
)
,

which yields an error of order O(h+
√
k) as stated before.

Another consequence of Theorem 4.1 is that in the limit κ → 0 the estimate (4.18)
takes the form

sup
0≤t≤T

Dδ(θ(t), θk,h(t)) ≲ 1 +
√
hT∥u∥∞
δ

+
√
kT∥u∥∞
δ

,

and thus recovers the result from [80], i.e. an error of order O(
√
h+

√
k).

For the diffusionless transport equation, the main source of the spatial discretization
error is the phenomenon of numerical diffusion. That is, the numerical scheme acts like
creating a diffusion term with diffusion coefficient h, that for the transport equation
reads as an advection-diffusion equation of the form

∂tθ + ∇ · (uθ) = h∆θ.

Therefore one would expect the rate of convergence for h to be of order 1/2 since that is
the known optimal rate for the vanishing diffusion or inviscid limit case, see [84]. However,
with κ > 0, numerical diffusion acts modifying the already existing diffusion coefficient κ
to κ+ h

∂tθ + ∇ · (uθ) = (κ+ h)∆θ,

and hence by the recent result [72], the expected rate of convergence for h has to be of
order 1.

Let us close the discussion of the main result, by remarking on including source-
sink distributions and non-homogeneous boundary conditions for (4.1). First, a flux

55



Chapter 4. Error estimates for a finite volume scheme with rough coefficients

boundary condition where (4.2) is replaced by (κ∇θ − u) · n = g in (0, T ) × ∂D for some
g : [0, T ] × ∂D → R can be transformed into a source-sink distribution f : [0, T ] × D → R
in the domain using a suitable extension. Hence, it is sufficient to do the analysis instead
of (4.1) for

∂tθ + ∇ · (uθ) = κ∆θ + f in (0, T ) × D.

with suitable initial data and no-flux boundary condition (4.2). By another standard
transformation, which consists of renormalizing the density θ, we can ensure that the
total sources and sinks are balanced, which amounts to

∫
D f(t, x)dx = 0 for all t ∈ [0, T ].

In particular, these transformations ensure that θ conserves mass. This is essential for
using the optimal transport distance Dδ to compare the solution θ with its numerical
approximation θk,h.

This situation with a balanced source-sink distribution was investigated in [80] for
the diffusionless transport equation, and we expect that the analysis carries over to the
present case with diffusion. The source-sink term will introduce additional discretization
errors when we discuss the discretization of data in Lemmas 4.4–4.6 below. For the
temporal discretization, where we use a stochastic Lagrangian representation of the
solution, becomes more involved in the presence of a source-sink distribution and we
omit it for the sake of concise presentation.

4.2.3. Properties of the numerical scheme

First of all we state a result on the well-posedness of the numerical scheme.

Lemma 4.1. Under the hypothesis for Theorem 4.1, there exists a unique solution to the
implicit upwind scheme (4.21) that is mass preserving and monotone, i.e. the solution
remains positive for positive initial data.

This is a classical result and we refer to [43, Theorem 4.1] for a detailed proof.
The main goal of this section is to develop stability estimates for the numerical scheme

that are analogous to the a priori estimates (4.5) and (4.6). In order to do so it is
convenient first to recall that some of the discretized versions of the functions involved
on the scheme are controlled by their continuous counterpart. Specifically, recall that for
the initial datum θ0

h and the divergence of the velocity field ∇ · u it holds

∥θ0
h∥Lq ≤ ∥θ0∥Lq , (4.19)

∥(∇ · u)−
k,h∥L1(L∞) ≤ ∥(∇ · u)−∥L1(L∞). (4.20)

We omit the proof for the sake of brevity but it can be found on [80, Lemma 3].
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Let us now rewrite the upwind scheme (4.14) in the following equivalent form:

θn+1
K − θnK

k
+
∑
L∼K

|K |L|
|K|

unKL
θn+1
K + θn+1

L

2 +
∑
L∼K

|K |L|
|K|

|unKL|θ
n+1
K − θn+1

L

2

+ κ
∑
L∼K

|K |L|
|K|

θn+1
K − θn+1

L

dKL
= 0

(4.21)

for every n ∈ J0, N − 1K and K ∈ T . This is a straightforward consequence of the
identities

un+
KL = |uKL| + uKL

2 and un−
KL = |uKL| − uKL

2 .

Then, the stability estimates for the finite volume scheme hold as follows.
Lemma 4.2 (Stability estimates). Let θk,h be the solution to the upwind scheme (4.14)
with nonnegative initial data. Then for any q ∈ (1,∞), α > 1 and k ≤ kmax(α) as defined
in (4.15), it holds

∥θk,h∥L∞(Lq) ≤ Λ
α
(

1− 1
q

)
k,h ∥θ0

h∥Lq (4.22)

where Λk,h = exp(∥(∇ · u)−
k,h∥L1(L∞)). Moreover, if r ∈ (1,min{q, 2}] it also holds,

∑
n

∑
K

|K|
(
θn+1
K + θnK

2

)r−2

(θn+1
K − θnK)2

+ k
∑
n

∑
K

∑
L∼K

|K |L|
(

|unKL| + κ

dKL

)
(θn+1
K − θn+1

L )2
(
θn+1
K + θn+1

L

2

)r−2

≤ Cr (1 + (r − 1) log Λk,h) Λα(r−1)
k,h ∥θ0

h∥rLr

(4.23)

with Cr being a positive constant that satisfies Cr → ∞ as r → 1.

Proof. By the monotonicity of the scheme and the nonnegativity of the initial datum, we
deduce that the solution of the numerical scheme θk,h is nonnegative. In order to study
those stability estimates we will work with the second formulation of the upwind scheme
(4.21). First of all, let us multiply the scheme by |K| so that we get

|K|(θn+1
K − θnK) + k

∑
L∼K

|K |L|unKL
θn+1
K + θn+1

L

2

+ k
∑
L∼K

|K |L||unKL|θ
n+1
K − θn+1

L

2 + κk
∑
L∼K

|K |L|θ
n+1
K − θn+1

L

dKL
= 0.

We denote the four addends as InK + IInK + IIInK + IVn
K = 0. Analogously to the continuous
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setting, we will obtain the stability estimates by testing with (θn+1
K )q−1 and summing

over K ∈ T , namely∑
K

InK(θn+1
K )q−1

︸ ︷︷ ︸
In

+
∑
K

IInK(θn+1
K )q−1

︸ ︷︷ ︸
IIn

+
∑
K

IIInK(θn+1
K )q−1

︸ ︷︷ ︸
IIIn

+
∑
K

IVn
K(θn+1

K )q−1

︸ ︷︷ ︸
IVn

= 0.

For the first term, we can apply Hölder’s inequality,

In =
∑
K

|K|(θn+1
K )q −

∑
K

|K|θnK(θn+1
K )q−1 ≥ ∥θn+1

k,h ∥qLq − ∥θnk,h∥Lq ∥θn+1
k,h ∥q−1

Lq .

For the second term we recall that unKL = −unLK , hence we can symmetrize IIn as follows

IIn = k

2
∑
K

∑
L∼K

|K |L|unKL
θn+1
K + θn+1

L

2 ((θn+1
K )q−1 − (θn+1

L )q−1).

We introduce the q-mean defined as a function Θq : R+ × R+ → R+ such that

Θq(x, y) = q − 1
q

xq − yq

xq−1 − yq−1 .

Note that Θ2(x, y) is the arithmetic mean. Now, the above expression can be split into
two factors, IIn = IIn1 + IIn2 , defined as

IIn1 = q − 1
q

k

2
∑
K

∑
L∼K

|K |L|unKL((θn+1
K )q − (θn+1

L )q),

IIn2 = k

2
∑
K

∑
L∼K

|K |L|(Θ2 − Θq)(θn+1
K , θn+1

L )((θn+1
K )q−1 − (θn+1

L )q−1).

On the one hand, for the first addend we can symmetrize again such that

IIn1 = q − 1
q

k
∑
K

(θn+1
K )q

∑
K∼L

|K |L|unKL = q − 1
q

k
∑
K

(θn+1
K )q(∇ · u)nK

≥ −q − 1
q

λn∥θk,h(tn+1)∥qLq

where λn = k∥(∇ · u(tn))−
k,h∥L∞ . On the other hand, we estimate IIn2 using the following

bound
|Θ2(x, y) − Θq(x, y)| ≤ |q − 2|

q

|x− y|
2 (4.24)
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for all x, y > 0. More information about the q-mean and a detailed proof of the latter
estimate can be found on [80, Appendix A]. By the estimate (4.24) follows

IIn2 ≥ −k

2
|q − 2|
q

∑
K

∑
L∼K

|K |L||unKL|θ
n+1
K − θn+1

L

2 ((θn+1
K )q−1 − (θn+1

L )q−1).

Analogously, for both IIIn and IVn the symmetrization procedure might be applied to
get the bounds

IIIn ≥ k

2
∑
K

∑
L∼K

|K |L||unKL|θ
n+1
K − θn+1

L

2 ((θn+1
K )q−1 − (θn+1

L )q−1).

IVn = κ
k

2
∑
K

∑
L∼K

|K |L|θ
n+1
K − θn+1

L

dKL
((θn+1

K )q−1 − (θn+1
L )q−1).

All in all we get the estimate

∥θn+1
k,h ∥qLq + k

2

(
1 − |q − 2|

q

)∑
K

∑
L∼K

|K |L||unKL|θ
n+1
K − θn+1

L

2 ((θn+1
K )q−1 − (θn+1

L )q−1)

+ κ
k

2
∑
K

∑
L∼K

|K |L|θ
n+1
K − θn+1

L

dKL
((θn+1

K )q−1 − (θn+1
L )q−1)

≤ ∥θnk,h∥Lq ∥θn+1
k,h ∥q−1

Lq + q − 1
q

λn∥θn+1
k,h ∥qLq .

(4.25)
In order to obtain the first stability estimate (4.22) we can drop the second and third
addends in (4.25) such that, dividing by ∥θn+1

k,h ∥q−1
Lq , we get(

1 − q − 1
q

λn
)

∥θn+1
k,h ∥Lq ≤ ∥θnk,h∥Lq .

Now, if k ≤ kmax(α) it holds that

q − 1
q

λn ≤ α− 1
α

,

and therefore 1
1 − q−1

q λn
≤ 1 + α

q − 1
q

λn ≤ exp
(
α
q − 1
q

λn
)
.
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By an iterative argument we get

∥θnk,h∥Lq ≤ exp
(
α
q − 1
q

k
n∑
i=1

∥(∇ · u(ti−1))−
k,h∥L∞

)
∥θ0
h∥Lq

for every n ∈ J0, NK and thus we get the first stability estimate (4.22).
To establish the temporal and spatial gradient estimate (4.23) we repeat a similar

computation. However now we need to develop a different bound for the term In and
thus we use the estimate

rxr−1(x− y) ≥ xr − yr + r(r − 1)
23−r

(
x+ y

2

)r−2
(x− y)2

that holds for r ∈ (1, 2] and comes from the convexity of the map x 7→ xr. Then, by
setting x = θn+1

K , y = θnK and r ∈ (1,min{q, 2}], we get the following lower bound for In,

In =
∑
K

|K|(θn+1
K )r −

∑
K

|K|θnK(θn+1
K )r−1 =

∑
K

|K|(θn+1
K )r−1(θn+1

K − θnK)

≥ 1
r

∑
K

|K|((θn+1
K )r − (θnK)r) + r − 1

23−r

∑
K

|K|
(
θn+1
K + θnK

2

)r−2

(θn+1
K − θnK)2,

and adding it to the stability estimate (4.25) instead of the previous one, we get

1
r

∥θn+1
k,h ∥rLr + r − 1

23−r

∑
K

|K|
(
θn+1
K + θnK

2

)r−2

(θn+1
K − θnK)2

+ r − 1
r

k

2
∑
K

∑
L∼K

|K |L||unKL|(θn+1
K − θn+1

L )((θn+1
K )r−1 − (θn+1

L )r−1)

+ κ
k

2
∑
K

∑
L∼K

|K |L|θ
n+1
K − θn+1

L

dKL
((θn+1

K )r−1 − (θn+1
L )r−1)

≤ 1
r

∥θnk,h∥rLr + r − 1
r

λn∥θn+1
k,h ∥rLr .

We now rewrite the advection and diffusion terms using the following elementary inequality
that holds for any r ∈ (1, 2] and x, y > 0,

(x− y)2
(
x+ y

2

)r−2
≤ (x− y)x

r−1 − yr−1

r − 1 .
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Choosing x = θn+1
K , y = θn+1

L we thus get

r − 1
23−r

∑
K

|K|
(
θn+1
K + θnK

2

)r−2

(θn+1
K − θnK)2

+ r − 1
r

k

2
∑
K

∑
L∼K

|K |L|
(

|unKL| + κ

dKL

)(
θn+1
K − θn+1

L

2

)r−2

(θn+1
K − θn+1

L )2

≤ 1
r

∥θnk,h∥rLr + r − 1
r

λn∥θn+1
k,h ∥rLr .

Summing over n and applying (4.22) it yields the desired estimate (4.23) with constant

Cr = 2max{22−r, r}
r(r − 1) . ■

Lemma 4.2 provides a discrete version of the standard stability and energy estimates
in the continuous setting. On the one hand (4.22) is the discrete version of (4.5), while
on the other hand (4.6) is reproduced in the numerical scheme setting by (4.23) dropping
the addends related to the time derivative and the advection field.

A direct consequence of Lemma 4.2 together with (4.19) and (4.20) is that the ex-
pressions on the right hand side in (4.22) and (4.23) are controlled by ∥θ0∥Lq and
∥(∇ · u)−∥L1(L∞) and therefore they are O(1). In particular it holds

∥θk,h∥L∞(Lq) ≲ 1,

which is certainly not surprising since that also holds for the exact solutions of (4.1).
Let us introduce now two weak BV estimates which will be a key tool to obtain

the desired result from Theorem 4.1. These estimates are a consequence of numerical
diffusion.

Lemma 4.3 (BV estimates). Let θk,h be a solution of the numerical scheme (4.14).
Under the assumptions of Theorem 4.1 we get the following BV estimates

∑
n

∑
K

|K||θn+1
K − θnK | ≲

√
T

k
, (4.26)

k
∑
n

∑
K

∑
L∼K

|K |L|
(√

κ

T
+
√

h

T∥u∥∞
|unKL|

)
|θn+1
K − θn+1

L | ≲ 1. (4.27)

The first estimate on the time discretization (4.26) does not have a counterpart in
the continuous setting and it is a by-product of the numerical diffusion introduced by
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the temporal discretization of the scheme. The second one (4.27) instead presents two
differentiated parts. First we obtain a spatial strong BV estimate

k
∑
n

∑
K

∑
L∼K

|K |L||θn+1
K − θn+1

L | ≲

√
T

κ
, (4.28)

which is precisely the responsible for carrying an upgrade on the convergence rate from
O(h1/2) to O(h) in comparison with the transport equation without diffusion, [79, 80].
This BV estimate can be understood as the discrete analogous to

∥∇θ∥L1(L1) ≲

√
T

κ
.

Then we also obtain the spatial weak BV estimate

k
∑
n

∑
K

∑
L∼K

|K |L||unKL||θn+1
K − θn+1

L | ≲

√
T∥u∥∞
h

(4.29)

that is a consequence of the numerical diffusion introduced by the spatial discretization
and can be read as the surviving part in the limit κ → 0. It is precisely the weak BV
estimate obtained in [80, Proposition 1] for the transport equation.

Proof. We start proving (4.26). Let us first consider a nonnegative initial datum. Let
r ∈ (1,min{2, q}] and smuggle into (4.26) the weight ((θn+1

K + θnK)/2)(r−2)/2 such that

∑
K

|K||θn+1
K − θnK |

(
θn+1
K + θnK

2

) r−2
2
(
θn+1
K + θnK

2

) 2−r
2

= In .

Then, via Cauchy-Schwarz,

In ≤

∑
K

|K|(θn+1
K − θnK)2

(
θn+1
K + θnK

2

)r−2
1/2 ∑

K

|K|
(
θn+1
K + θnK

2

)2−r
1/2

.

By Lemma 4.2 and (4.20), the first factor of the product is controlled by a constant
depending on r, the L1(L∞) norm of (∇ · u)− and the Lr norm of the initial datum.
Therefore, summing over n and applying Jensen’s inequality for the time variable now
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we can write,

∑
n

In ≲
∑
n

∑
K

|K|
(
θn+1
K + θnK

2

)2−r
1/2

≤
∑
n

[∑
K

|K|((θn+1
K )2−r + (θnK)2−r)

]1/2

≤ 2T 1/2
(∑

n

∥θk,h(tn)∥2−r
L2−r

)1/2

≲

√
T

k
∥θk,h∥(2−r)/2

L1(L2−r).

Hence, by (4.19) and (4.20) we get the weak BV estimate (4.26) for nonnegative initial
data. Once this is established, for general initial data the estimate follows via triangle
inequality.

We argue analogously to get the estimate (4.27). We will obtain the two estimates
(4.28) and (4.29) separately. Let us start with the strong BV estimate (4.28). Consider a
non negative initial datum since for a general case we can just apply a triangle inequality.
Smuggling the same weight as before, with r ∈ (1,min{q, 2}], together with a factor dKL
we can write via Cauchy-Schwarz inequality,

k
∑
n

∑
K

∑
L∼K

|K |L||θn+1
K − θn+1

L | = k
∑
n

(IInS)1/2(IIInS)1/2 =
(
k
∑
n

IInS

)1/2(
k
∑
n

IIInS

)1/2

with

IInS =
∑
K

∑
L∼K

|K |L|(θ
n+1
K − θn+1

L )2

dKL

(
θn+1
K + θn+1

L

2

)r−2

,

IIInS =
∑
K

∑
L∼K

|K |L|dKL

(
θn+1
K + θn+1

L

2

)2−r

.

The term involving IInS is controlled thanks to (4.23) by
(
k
∑
n

IInS

)1/2

≲
1√
κ
.

For IIInS we can use the identity ((x+ y)/2)2−r ≤ x2−r + y2−r for any x, y > 0 and the
trivial bound dKL ≤ 2h. Then by the isoperimetric property of the mesh (4.10) we get

IIInS ≤ h
∑
K

(θn+1
K )2−r ∑

L∼K
|K |L| ≲

∑
K

|K|(θn+1
K )2−r = ∥θk,h(tn)∥L2−r .

Again we can estimate ∥θk,h(tn)∥L2−r by ∥θk,h(tn)∥Lr and a factor depending on |D| so
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that it yields the remaining term(
k
∑
n

IIInS

)1/2

≲
√
T .

Thus, we obtain the strong BV estimate (4.28).
For the weak BV estimate (4.29) we follow a similar argument. Let r ∈ (1,min{q, 2}]

and apply Cauchy-Schwarz as before,

k
∑
n

∑
K

∑
L∼K

|K |L||unKL||θn+1
K − θn+1

L | = k
∑
n

(IInW )1/2(IIInW )1/2

=
(
k
∑
n

IInW

)1/2(
k
∑
n

IIInW

)1/2

where now we define

IInW =
∑
K

∑
L∼K

|K |L||unKL|2(θn+1
K − θn+1

L )2
(
θn+1
K + θn+1

L

2

)r−2

,

IIInW =
∑
K

∑
L∼K

|K |L|
(
θn+1
K + θn+1

L

2

)2−r

.

Then a direct application of (4.23) and following the previous argument for the strong
BV estimate we obtain(

k
∑
n

IInW

)1/2

≲
√

∥u∥∞ and
(
k
∑
n

IIInW

)1/2

≲

√
T

h

so that we complete the proof of (4.27). ■

4.3. Proof of Theorem 4.1

In this section we will prove the main result of the chapter. In order to do so we need to
derive all the error estimates coming from the different discretizations that contribute
to the stability estimate (4.18). There are two main sources of error: on the one hand
the discretization in time and space of the initial datum and the vector field and on the
other hand there is the error associated to the scheme, also known as truncation error.
For the diffusionless transport equation one can see (for instance, in [79, 80]) that the
error that governs the convergence of the numerical solution comes exclusively in form of
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truncation error. However in our case we will see how both sources of error, truncation
and discretization of data, contribute equally to the final estimate.

Before turning to the proof of the Theorem let us first mention essential mathematical
tools to study stability estimates for the advection-diffusion equations in a low regularity
framework.

On the one hand, we use the Hardy-Littlewood maximal function from the Calderón-
Zygmund theory in harmonic analysis. Given a measurable function f : Rd → R, we say
M is the maximal function operator and it is defined by

Mf(x) = sup
R>0

1
Rd

∫
BR(x)∩D

|f(y)| dy.

The operator is continuous from Lp to Lp for every 1 < p ≤ ∞ and therefore we get the
estimate,

∥Mf∥Lp ≲ ∥f∥Lp , for 1 < p ≤ ∞. (4.30)

Moreover, via the maximal function we can establish bounds for the different quotients
of a measurable function through the so-called Morrey’s inequality, that is

|f(x) − f(y)|
|x− y|

≲ (M∇f)(x) + (M∇f)(y) (4.31)

for almost every x, y ∈ D and where f denotes a Sobolev regular extension of f to the
full space Rd.

On the other hand, as stated in the introduction the stability estimate (4.6) provides
for any I ⊂ [0, T ] an explicit control on the L1(I;W 1,1(D)) norm of the solution to (4.1).
We can see this by choosing r ∈ (1,min{q, 2}], then we have

∫
I

∫
D

|∇θ| dx dt ≤
(∫

I

∫
D

|θ|r−2|∇θ|2 dx dt
)1/2(∫

I

∫
D

|θ|2−r dx dt
)1/2

≲

√
|I|
κ

∥θ0∥Lr

(4.32)

where we have used Hölder’s inequality and we have estimated ∥θ∥L∞(L2−r) by ∥θ∥L∞(Lr)
with a factor depending on |D| and

∫
I

∫
D

|θ|2−r dx dt ≲
∫
I

(∫
D

|θ|r dx
) 2−r

r

dt ≲ |I|∥θ∥2−r
L∞(Lr) ≲ |I|∥θ0∥2−r

Lr .
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4.3.1. Error due to the discretization of the data

We start with the contribution to the error estimates caused by the discretization in time.

Lemma 4.4. Let t ∈ [tn, tn+1) with n ∈ J0, N − 1K. Then it holds

Dδ(θ(t), θ(tn)) ≲ k∥u∥∞ +
√
kκ

δ
. (4.33)

Proof. Let ζt be the optimal Kantorovich potential corresponding to the distance
Dδ(θ(t), θ(tn)) at time t ∈ [tn, tn+1) for some n ∈ J0, N − 1K, such that

Dδ(θ(t), θ(tn)) =
∫

D
ζt(x)(θ(t, x) − θ(tn, x)) dx.

By means of (2.11) we can rewrite the distance as

Dδ(θ(t), θ(tn)) =
∫ t

tn

∫
D

∇ζt(x) · u(s, x)θ(s, x) dx ds− κ

∫ t

tn

∫
D

∇ζt(x) · ∇θ(s, x) dx ds,

that to shorten the notation we denote as Dδ(θ(t), θ(tn)) = I + II. The first addend can
be controlled with the properties of the Kantorovich potential as follows,

I =
∫ t

tn

∫
D

∇ζt(x) · u(s, x)θ(s, x) dx ds ≲ k

δ
∥u∥∞∥θ∥L∞(L1).

For the second term, we apply the estimate (4.32) on the time interval [tn, t) and we get

∥∇θ∥L1([tn,t);L1(D)) ≲

√
t− tn

κ
≤

√
k

κ

and thus it yields the bound for II via

II = −κ
∫ t

tn

∫
D

∇ζt(x) · ∇θ(s, x) dx ds ≤ κ

δ

∫ t

tn

∫
D

|∇θ(s, x)| dx ds ≲
√
kκ

δ
.

Thus, putting everything together it yields the estimate (4.33). ■

Next in order we study the error caused by the spatial discretization of the initial
datum θ0. We define θ0

h(x) = θ0
K(x) as in (4.12) piecewise for almost every x ∈ K and

for each K ∈ T . This result is a straightforward consequence of the stability estimate for
the advection-diffusion equation (4.8).
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Lemma 4.5. Let θh be the solution to the advection-diffusion equation (4.1) with initial
datum θ0

h. Then it holds

sup
0≤t≤T

Dδ(θ(t), θh(t)) ≲ 1 + h

δ
. (4.34)

Proof. In this case θ and θh are solutions to the same equation with same velocity fields
and same diffusion coefficients, therefore a direct application of (4.8) yields

sup
0≤t≤T

Dδ(θ(t), θh(t)) ≲ 1 + Dδ(θ0, θ0
h).

Now let us write ζt to denote the optimal Kantorovich potential such that it holds

Dδ(θ0, θ0
h) =

∫
D
ζt(x)(θ0(x) − θ0

h) dx =
∫

D
(ζt(x) − (ζt)h(x))θ0(x) dx

where the second equality comes from the symmetry property of the cell-averaging (·)h
operator, that is∫

D
f(x)gh(x) dx =

∑
K

|K|−
∫
K

−
∫
K
f(x)g(y) dy dx =

∫
D
fh(x)g(x) dx

for all integrable f and g such that its product is also integrable. Furthermore, we use
the definition of the Kantorovich potential together with its Lipschitz bound pointwise
in x ∈ K so that,

|ζt(x) − (ζt)h(x)| ≤ −
∫
K

|ζt(x) − ζt(y)| dy ≤ −
∫
K

log
( |x− y|

δ
+ 1

)
dy ≤ log

(
h

δ
+ 1

)
≤ h

δ
.

We thus find the final estimate (4.34) just by combining everything. ■

In addition we must also consider the error due to the time discretization for the
coefficients of the equation. We denote by uk the vector field averaged in time over
[tn, tn+1) as follows,

uk(t, x) = −
∫ tn+1

tn
u(t, x) dt for a.e. t ∈ [tn, tn+1).

Lemma 4.6. Let θk be the solution to the advection-diffusion equation (4.1) with vector
field uk. Then it holds for any m ∈ J0, NK

Dδ(θ(tm, ·), θk(tm, ·)) ≲ 1 + k(∥u∥∞ + 1)
δ

+
√
kκ

δ
. (4.35)
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For the proof of the Lemma we need to introduce a stochastic Lagrangian representation
for the advection-diffusion equation. Consider a filtered probability space (Ω,F ,Ft,P),
for any t ≥ 0 we say the map Xt : D → D is an stochastic Lagrangian flow if for every
x ∈ D it solves the stochastic differential equation

Xt = Xx
t = x+

∫ t

0
u(s,Xs(x)) ds+

√
2κBt −

∫ t

0
n(Xs(x)) dLs. (4.36)

Here {Bt}t≥0 is a Ft-adapted Brownian motion and {Lt}t≥0 is an Ft-adapted local time
of the process {Xt}t≥0 at the boundary ∂D. By the classic Doob maximal martingale
inequality (see [77]), we have for any q > 1 the bound for the Brownian motion,

E
[

sup
0≤s≤t

|Bs|q
] 1

q

≤ q

q − 1
√
t. (4.37)

Since the setting and tools needed for the proof of this Lemma use some language from
stochastic analysis and differs from the rest of the mathematical tools presented in this
chapter, we include for the convenience of the reader the Appendix A.1 reviewing some
of the abstract setting and the formal definitions that will be used along this proof.

Proof of Lemma 4.6. We can assume by a density argument that u and uk are smooth
in space and continuous in time. Indeed, this a consequence of a classic approximation
argument leading to the emergence of a commutator, which can be estimated along the
lines of [37, Lemma 2.1] or [33, Section 2], and the fact that the logarithmic Kantorovich–
Rubinstein distance metrizes weak convergence.

Without loss of generality, we assume that θ0 is a probability measure. Hence, by the
results stated in the Appendix we find processes {Xt}t≥0 and {Xk

t }t≥0, strong solutions to
the reflected SDE (A.3) started with law θ0 driven by the same Brownian motion {Bt}t≥0
with vector field u and uk, respectively. The according local times at the boundary are
denoted by {Lt}t≥0 and {Lkt }t≥0. In this way, we constructed a pathwise coupling of θ(t)
and θk(t), i.e. lawXt = θ(t) and lawXk

t = θk(t) and we can straightforwardly estimate
the logarithmic Kantorovich–Rubinstein distance with the help of the Lagrangian coupling
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for any t ∈ [0, T ] by

Dδ(θ(t), θk(t)) ≤ Eθ0

[
log

(
|Xt −Xk

t |
δ

+ 1
)]

≤ e
t

r0 Eθ0

[
log

(
|Xt −Xk

t |
δ

e
− 1

2r0
(Lt+Lk

t ) + 1
)]
,

≲ Eθ0

[
log

(
|Xt −Xk

t |
δ

e
− 1

2r0
(Lt+Lk

t ) + 1
)]
,

where we used the fact that the boundary local times satisfy |Lt|, |Lkt | ≤ t for any t ∈ [0, T ]
and where r0 is the constant given by the uniform exterior ball condition for the domain
(4.11). We have also estimated et/r0 with eT/r0 and absorbed this constant in ≲. Hence,
by telescoping and using that X0 = Xk

0 , we arrive at the estimate

Dδ(θ(tm), θk(tm)) ≲
m−1∑
n=0

(
Eθ0

[
log

(
|Xtn+1 −Xk

tn+1 |
δ

e
− 1

2r0

(
Ltn+1 +Lk

tn+1
)

+ 1
)]

− Eθ0

[
log

(
|Xtn −Xk

tn |
δ

e
− 1

2r0
(Ltn +Lk

tn) + 1
)])

.

The representation (4.36) and Itô’s formula allows to estimate for any n ∈ J0,m− 1K

Eθ0

[
log

(
|Xtn+1 −Xk

tn+1 |
δ

e
− 1

2r0

(
Ltn+1 +Lk

tn+1
)

+ 1
)

− log
(

|Xtn −Xk
tn |

δ
e

− 1
2r0

(Ltn +Lk
tn) + 1

)]

= Eθ0

[∫ tn+1

tn
e

− 1
2r0

(Lt+Lk
t )

Xt−Xk
t

|Xt−Xk
t | ·

(
dXt − dXk

t

)
− 1

2r0
|Xt −Xk

t |
(
dLt + dLkt

)
|Xt −Xk

t |e− 1
2r0

(Lt+Lk
t ) + δ

]

≲ Eθ0

[∫ tn+1

tn

Xt−Xk
t

|Xt−Xk
t | ·

(
dXt − dXk

t

)
− 1

2r0
|Xt −Xk

t |
(
dLt + dLkt

)
|Xt −Xk

t |e− 1
2r0

(Lt+Lk
t ) + δ

]

≤ Eθ0

[∫ tn+1

tn

∣∣∣u(t,Xt) − uk(t,Xk
t )
∣∣∣

|Xt −Xk
t |e− 1

2r0
(Lt+Lk

t ) + δ
dt

]

− Eθ0

[∫ tn+1

tn

Xt−Xk
t

|Xt−Xk
t | · n(Xt) dLt − Xt−Xk

t

|Xt−Xk
t | · n(Xk

t ) dLkt + 1
2r0

|Xt −Xk
t |(dLt + dLkt )

|Xt −Xk
t |e− 1

2r0
(Lt+Lk

t ) + δ

]
.
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Next, we rearrange the integrands in the dominator of the second term in such a way
that those have a sign thanks to the exterior ball condition (4.11). Indeed, we observe
that for Xt, X

k
t ∈ D, one has

Xt −Xk
t

|Xt −Xk
t |

· n(Xt) + 1
2r0

∣∣∣Xt −Xk
t

∣∣∣ ≥ 0,

and

− Xt −Xk
t

|Xt −Xk
t |

· n(Xk
t ) + 1

2r0

∣∣∣Xt −Xk
t

∣∣∣ = Xk
t −Xt

|Xk
t −Xt|

· n(Xk
t ) + 1

2r0

∣∣∣Xk
t −Xt

∣∣∣ ≥ 0.

Hence, it is enough to continue to estimate the first one, for which we first get rid
of the exponential factor in the denominator again using the property |Lt|, |Lkt | ≤ t.
Summarizing our findings so far, we get

Dδ(θ(tm), θk(tm)) ≲ exp
(2tm
r0

)m−1∑
n=0

In (4.38)

where

In = Eθ0

∫ tn+1

tn

∣∣∣u(t,Xt) − uk(s,Xk
t )
∣∣∣ ds∣∣Xt −Xk

t

∣∣+ δ

.
Using the definition of uk and Morrey’s estimate (4.31) we can bound the first addend by

∣∣∣u(s,Xt) − uk(s,Xk
t )
∣∣∣ ≤ −

∫ tn+1

tn

∣∣∣u(t,Xt) − u(t,Xk
s )
∣∣∣ ds

≲ −
∫ tn+1

tn

(
(M∇u)(t,Xt) + (M∇u)(t,Xk

s )
)
|Xt −Xk

s | ds .

Plugging this estimate into In, we introduce the normalized Lebesgue measure

dω0(x) = 1D(x)
|D|

dx
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and using Hölder’s inequality we can write

In ≲ |D|
∫ tn+1

tn
−
∫ tn+1

tn
Eω0

[(
(M∇u)(s,Xs) + (M∇u)(s,Xk

τ )
) |Xs −Xk

τ |∣∣Xtn −Xk
tn
∣∣+ δ

|θ0|
]

dτ ds

≲ |D|
∫ tn+1

tn
−
∫ tn+1

tn
Eω0

[
|M∇u(s,Xs)|p + |M∇u(s,Xk

τ )|p
] 1

p

· Eω0

[(
|Xs −Xk

τ |
|Xs −Xk

s | + δ
|θ0|

)q] 1
q

dτ ds

≤
∫ tn+1

tn
−
∫ tn+1

tn

(∫
Ω

|M∇u(s, x)|p dωs +
∫

Ω
|M∇u(s, x)|p dωkτ

) 1
p

· Eθ0

[(
|Xs −Xk

τ |
|Xs −Xk

s | + δ
|θ0|

)q] 1
q

,

where ωt and ωkt are by the representation (A.9) solutions to (4.1) with initial datum ω0
driven by u and uk, respectively.

Now the Lp norm of the maximal function is directly controlled by the fundamental
inequality for maximal functions (4.30). For the rest we can apply the elemental inequality,

|Xs −Xk
τ |q ≤ 2q−1(|Xs −Xk

s |q + |Xk
s −Xk

τ |q)

and by the definition of the stochastic flow (4.36) we have for any t, s ∈ [tn, tn+1), s ≤ t,
the estimate

E[|Xt −Xs|q] ≲ E
[∣∣∣∣∣
∫ tn+1

tn
u(s,Xs) ds

∣∣∣∣∣
q]

+ (2κ)q/2E[|Btn+1 −Btn |q]

+ E
[∣∣∣∣∣
∫ tn+1

tn
n(Xs) dLs

∣∣∣∣∣
q]

≤ ∥u∥q∞kq + (2κk)q/2 + kq

where we have used the Doob maximal martingale inequality for the Brownian motion
(4.37) and the standard bound for the Ft-adapted process Lt (A.4) together with the
trivial property of the normal vector ∥n∥L∞ = 1. Therefore, by means of these last two
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inequalities we can write

E
[(

|Xs −Xk
τ |

|Xs −Xk
s | + δ

)q]
≤ E

[
2q−1(|Xs −Xk

s |q + |Xk
s −Xk

τ |q)
(|Xs −Xk

s | + δ)q

]

≲ E
[

|Xs −Xk
s |q

|Xs −Xk
s |q

+ |Xk
s −Xk

τ |q

δq

]

≲ 1 + (∥u∥q∞ + 1)kq + (κk)q/2

δq
.

Finally, noticing that (1 + xq)1/q ≤ 1 + x and (xq + yq)1/q ≤ x + y for all q > 1 and
x, y > 0, it yields the estimate for In,

In ≲

(
1 + (∥u∥q∞ + 1)kq + (κk)q/2

δq

)1/q

∥θ0∥Lq

∫ tn+1

tn
∥∇u(s)∥Lp ds

≲

(
1 + (∥u∥∞ + 1)k

δ
+

√
κk

δ

)
∥θ0∥Lq

∫ tn+1

tn
∥∇u(s)∥Lp ds.

(4.39)

and hence by combining it with (4.38) and using that u ∈ L1(W 1,p) we get the result
stated by the Lemma. ■

At this point we collect the three discretization errors (time, initial data, vector-field)
from Lemmas 4.4– 4.6. Since the Kantorovich–Rubinstein distance Dδ(·, ·) satisfies the
triangle inequality we can just write now for any t ∈ [tm, tm+1) and any m ∈ J0, N − 1K,

Dδ(θ(t), θk,h(t)) ≤ Dδ(θ(t), θ(tm)) + Dδ(θ(tm), θh(tm))
+ Dδ(θh(tm), θk,h(tm)) + Dδ(θk,h(tm), θk,h(tm)),

where θk,h is the unique solution to the advection-diffusion equation (4.1) with vector
field uk and initial datum θ0

h. Notice that Lemma 4.4 and 4.5 yield control over the first
two addends. In order to get the bound for the third addend we apply Lemma 4.6 with
θ0 = θ0

h, and hence we arrive to the expression

Dδ(θ(t), θk,h(t)) ≲ 1 + h+ k∥u∥∞ +
√
kκ

δ
+ Dδ(θk,h(tm), θk,h(tm)). (4.40)

The last addend in (4.40) corresponds to the so-called truncation error or error caused
by the scheme. We will concentrate on it in the next section.
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4.3.2. Error due to the scheme

Since we already studied the errors coming from the discretization of the initial datum
and vector field, we can consider now the continuous problem (4.1) with vector field uk

and initial datum θ0
h. Also we can assume that t = tm for some m ∈ J0, NK such that we

have θ(t, x) = θk,h(tm, x). However, for the sake of a clear notation, along this section
we will write θ denoting θk,h.

We want to study the distance Dδ(θ(tm), θk,h(tm)) and in order to do so it is more
convenient to consider a piecewise linear temporal approximation of θk,h defined by

θ̂k,h(t, x) = t− tn

k
θn+1
K + tn+1 − t

k
θnK for a.e. (t, x) ∈ [tn, tn+1) ×K

for all K ∈ T and all n ∈ J0, NK. One can check that indeed for the time points of
the mesh tn with n ∈ J0, NK it holds θk,h(tn) = θ̂k,h(tn) and hence no additional error
term must be considered. This linear piecewise temporal approximation is particularly
convenient because it is weakly differentiable and by construction it holds,

∂tθ̂k,h(t, x) = θn+1
K − θnK

k
for a.e. (t, x) ∈ [tn, tn+1) ×K.

Therefore we can directly apply (2.11) to obtain

d

dt
Dδ(θ, θ̂k,h) =

∫
D

∇ζ · uθ dx+ κ

∫
D
ζ∆θ dx− 1

k

∑
K

∫
K
ζ(θn+1

K − θnK) dx.

where ζ represents the optimal Kantorovich potential associated to the distance Dδ(θ, θ̂k,h).
For the last term in the right hand side we can use the definition of the upwind scheme

(4.21) in an analogous process to what it is done with the continuous part. Then, after
integration over [tn, tn+1) we get

Dδ(θ(tn+1), θ̂k,h(tn+1)) − Dδ(θ(tn), θ̂k,h(tn)) = In + IIn + IIIn + IVn (4.41)
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with

In =
∫ tn+1

tn

∫
D

∇ζ · u(θ − θn+1
h ) dx dt, (4.42)

IIn =
∫ tn+1

tn

∫
D

∇ζ · uθn+1
h dx dt+ k

∑
K

ζnK
∑
L∼K

|K |L|unKL
θn+1
K + θn+1

L

2 , (4.43)

IIIn = k
∑
K

ζnK
∑
L∼K

|K |L||unKL|θ
n+1
K − θn+1

L

2 , (4.44)

IVn = κ

∫ tn+1

tn

∑
K

∫
K
ζ

(
∆θ −

∑
L∼K

|K |L|
|K|

θn+1
L − θn+1

K

dKL

)
dx dt, (4.45)

where we use the notation
ζnK = −

∫ tn+1

tn
−
∫
K
ζdx dt.

We will study the contribution to the final error caused by the scheme analysing the
four terms separately in the four following Lemmas.

Lemma 4.7 (Error from In). The first contribution to the error caused by the scheme is

∑
n

In ≲ 1 +
√
kT∥u∥∞
δ

.

We will omit the proof of this Lemma for the sake of brevity because the argument is
completely analogous to the one in [80, Lemma 7]: a combination of properties of the
optimal transport distance, Morrey’s inequality and stability estimates.

From now on our procedure here diverges from the techniques in [80], providing indeed
the better convergence rate for the size of the mesh h.

Lemma 4.8 (Error from IIn). The second contribution to the error caused by the scheme
is ∑

n

IIn ≲
h

δ
min

∥u∥∞

√
T

κ
,

√
T∥u∥∞
h

.
Proof. In order to proof the estimate for IIn first it is convenient to rewrite it in a more
suitable way. Let us abuse the notation for the sake of a clear exposition of the results
and write un for u(tn) and ζn for the average of ζ over the interval [tn, tn+1). With this
notation for the first addend in IIn notice that∫

K
∇ζ · un dx =

∑
L∼K

∫
K|L

ζun · nKL dHd−1 −
∫
K
ζ∇ · un dx.
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Meanwhile, since unKL = −unLK , for the second addend it holds

k
∑
K

ζnK
∑
L∼K

|K |L|unKL
θn+1
K + θn+1

L

2 = k
∑
K

θn+1
K

∑
L∼K

|K |L|unKL
ζnK − ζnL

2 .

Therefore we can develop the whole term as follows

IIn = k
∑
K

θn+1
K

∑
L∼K

[∫
K|L

ζnun · nKL dHd−1 − |K |L|unKL
ζnK + ζnL

2

]

− k
∑
K

θn+1
K

∫
K

(ζn − ζnK)∇ · un dx

= k
∑
K

θn+1
K

∑
L∼K

∫
K|L

ζn
[
(u− unK) − −

∫
K|L

(un − unK) dHd−1
]

· nKL dHd−1

+ k
∑
K

θn+1
K

∑
L∼K

|K |L|unKL

(
−
∫
K|L

ζn dHd−1 − ζnK + ζnL
2

)

− k
∑
K

θn+1
K

∫
K

(ζn − ζnK)∇ · un dx,

so that we call the three addends IIn1 , IIn2 and IIn3 respectively.
First, to estimate IIn1 , we can use the fact that ζnK is constant to add and subtract on

each L ∼ K a term of the form

ζnK

∫
K|L

(un − unK) · nKL dHd−1

such that we obtain

IIn1 = k
∑
K

θn+1
K

∑
L∼K

∫
K|L

(ζn − ζnK)(u− unK) · nKL dHd−1

+ k
∑
K

θn+1
K

∑
L∼K

∫
K|L

ζnK(u− unK) · nKL dHd−1

− k
∑
K

θn+1
K

∑
L∼K

∫
K|L

ζn−
∫
K|L

(un − unK) dHd−1 · nKL dHd−1

≤ 2k
∑
K

θn+1
K ∥ζn − ζnK∥L∞

∫
∂K

|un − unK | dHd−1.

Now on the one hand we use the Lipschitz condition of the Kantorovich potential, i.e.
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for every x ∈ K it holds

|ζ(x) − ζK | =
∣∣∣∣−∫
K

(ζ(x) − ζ(y)) dy
∣∣∣∣ ≤ ∥∇ζ∥L∞−

∫
K

|x− y| dy ≲
h

δ
. (4.46)

On the other hand by means of the trace and the Poincaré inequality (4.9) we obtain∫
∂K

|un − unK | dHd−1 ≲ ∥∇un∥L1(K) + 1
h

∥un − unK∥L1(K) ≲ ∥∇un∥L1(K).

Therefore combining everything, summing over n and using Hölder’s inequality we get
the estimate,

∑
n

IIn1 ≲
kh

δ

∑
n

∑
K

θn+1
K ∥∇un∥L1(K) ≤ h

δ
∥θk,h∥L∞(Lq)∥∇u∥L1(Lp).

For IIn2 instead we use again that unKL = −unLK and hence we can rewrite the term as

IIn2 = k
∑
K

θn+1
K − θn+1

L

2
∑
L∼K

|K |L|unKL

(
−
∫
K|L

ζn dHd−1 − ζnK + ζnL
2

)
,

so that by the Lipschitz property of ζ the last factor is bounded by

−
∫
K|L

ζn dHd−1 − ζnK − ζnL
2 ≲ −

∫
K

−
∫
K|L

(ζn(x) − ζ(y)) dHd−1(x) dy ≲
h

δ
.

Therefore, IIn2 is controlled then by a term of the form

IIn2 ≲
kh

δ
∥u∥∞

∑
K

∑
K|L

|K |L||θn+1
K − θn+1

L |,

and thus a direct application of (4.27) yields

∑
n

IIn2 ≲
h

δ
min

∥u∥∞

√
T

κ
,

√
T∥u∥∞
h

.
Finally for the third addend IIn3 we make use again of the Lipschitz property of ζ
from (4.46) and we bound the divergence of the vector field un by its gradient and some
dimension dependant constant such that we obtain

IIn3 ≲
kh

δ

∑
K

∣∣θn+1
K

∣∣ ∫
K

|∇un| dx ≤ kh

δ
∥θn+1
h ∥Lq ∥∇un∥Lp .
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After summation in n we get a bound analogous to the bound that we got for IIn1 and
thus all three addends in IIn are controlled by the factor stated in the claim of the
Lemma. ■

Lemma 4.9 (Error from IIIn). The third contribution to the error caused by the scheme
is ∑

n

IIIn ≲
h

δ
min

∥u∥∞

√
T

κ
,

√
T∥u∥∞
h

.
Proof. The proof of this Lemma follows a similar strategy to what has been performed
in the previous one. First of all notice that this time |unKL| = | − unKL| and hence we can
symmetrize IIIn as

IIIn = k
∑
K

∑
L∼K

|K |L||unKL|ζ
n
K − ζnL

2
θn+1
K − θn+1

L

2 .

Since the Kantorovich potential is Lipschitz we have the bound

|ζnK − ζnL| ≤ −
∫
K

−
∫
L

|ζn(x) − ζn(y)| dx dy ≤ ∥∇ζ∥L∞−
∫
K

−
∫
L

|x− y| dx dy ≲
h

δ

and hence
IIIn ≲

kh

δ
∥u∥∞

∑
K

∑
L∼K

|K |L||θnK − θnL|.

After summation in n, by means of the BV estimate (4.27) as before we obtain the
statement of the Lemma. ■

Finally, to study the contribution made by the diffusion term we will follow a similar
technique to what it is done in Lemma 4.4 but adapting it now to the setting of a finite
volume scheme. In order to make this suitable approximation of the Laplacian we need
to argue as follows.

Given an admissible tessellation T of D and two neighbouring cells K,L ∈ T we define
a diffeomorphism ϕKL : K → L with constant Jacobian derivative, what means

JϕKL ≡ | det ∇ϕKL| = |L|
|K|

such that the mass is preserved. Since all the admissible cells are convex the existence
of this map is guaranteed, for instance consider an appropriate Brenier map [17, 64] or
some other analogous construction [2]. Then, using this diffeomorphism we can define a
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finite-volume-based approximation of the Laplacian such as

∆hf(x) =
∑
L∼K

|K |L|
|K|

f ◦ ϕKL(x) − f(x)
dKL

for a.e. x ∈ K and all K ∈ T .

Indeed, for sufficiently regular functions f it holds limh→0 ∆hf = ∆f . This will be a key
instrument in the proof of the next and last Lemma.

Lemma 4.10 (Error from IVn). The fourth term does not contribute to the error caused
by the scheme, that is ∑

n

IVn ≤ 0.

Proof. To prove this result we follow an adapted version of the technique used in Lemma
4.4 that the authors explain in more detail in [72]. This technique in turn comes inspired
by [46]. Let us start by considering an approximation of the Laplacian as explained in
the previous paragraphs. By means of ∆h we can also define an approximation to IVn as
follows,

1
κ

IVn
h =

∫ tn+1

tn

∑
K

∫
K
ζ

(
∆hθ −

∑
L∼K

|K |L|
|K|

θn+1
L − θn+1

K

dKL

)
dx dt

=
∫ tn+1

tn

∑
K

∫
K
ζ(x)

(∑
L∼K

|K |L|
|K|

θ ◦ ϕKL(x) − θ(x)
dKL

−
∑
L∼K

|K |L|
|K|

θn+1
L − θn+1

K

dKL

)
dx dt.

Notice that since ζ ∈ W 1,∞ and θ ∈ W 1,1 it holds

lim
h→0

IVn
h = IVn,

and thus it is enough to study the approximation IVn
h instead of IVn.

Through a convenient change of variables y = ϕKL(x) on the first addend that we can
make because ϕKL is a diffeomorphism, it yields

1
κ

IVn
h =

∫ tn+1

tn

∑
K

∑
L∼K

|K |L|
|K|

1
dKL

∫
K
ζ(x)

[
(θ ◦ ϕKL(x) − θn+1

L ) − (θ(x) − θn+1
K )

]
dx dt

=
∫ tn+1

tn

∑
K

∑
L∼K

|K |L|
|L|

1
dKL

∫
L
ζ ◦ ϕ−1

KL(y)(θ(y) − θn+1
L ) dy dt

−
∫ tn+1

tn

∑
K

∑
L∼K

|K |L|
|K|

1
dKL

∫
K
ζ(x)(θ(x) − θn+1

K ) dx dt,

where we have used that the Jacobian derivative of ϕKL is constant and equals |L|/|K|.
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Then notice that by definition ζ is the optimal Kantorovich potential for the distance
between θ and θk,h, i.e.

∑
K

∫
K
ζ(x)(θ(x) − θn+1

K ) dx = Dδ(θ, θk,h).

Furthermore, the optimal ζ is taken as the supremum over a set of functions where
ζ ◦ ϕ−1

KL also belongs to. Therefore it holds

∑
K

∫
K
ζ ◦ ϕ−1

KL(x)(θ(x) − θn+1
K ) dx ≤ Dδ(θ, θk,h)

and hence, after relabelling in a suitable way

1
κ

IVn
h ≤

∫ tn+1

tn

∑
K

∑
L∼K

|K |L|
|K|

1
dKL

(Dδ(θ, θk,h)|K − Dδ(θ, θk,h)|K) dt = 0, (4.47)

where we denote by Dδ(θ, θk,h)|K the restriction of the distance Dδ(θ, θk,h) to the subset
K ⊂ D. Since (4.47) holds uniformly in h, it yields that in the limit IVn does not
contribute to the error caused the scheme. ■

Proof of Theorem 4.1. Finally we can get the result on Theorem 4.1 with a straight-
forward combination of Lemmas 4.4−4.10. The first three of them already yield the
intermediate estimate (4.40). For the remaining term we just notice that by definition
θk,h(0) = θk,h(0) = θ0

h and thus we can sum on (4.41) so that

Dδ(θk,h(tm), θk,h(tm)) =
m∑
n=0

(In + IIn + IIIn + IVn)

≲ 1 + h

δ
min

∥u∥∞

√
T

κ
,

√
T∥u∥∞
h

+
√
kT∥u∥∞
δ

.

Combining this with (4.40) we get the estimate on Theorem 4.1. ■
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5. Ergodicity and mixing results with
random vector fields

Chapter summary

In this work we consider a passive scalar advected by a velocity field that
evolves via a parameter that follows a random path. We prove that, provided
that certain operator involving the vector field is hypocoercive, solution to
the transport problem driven by such stochastic vector field is ergodic. As a
consequence we obtain that the vector field mixes any initial configuration
for the passive scalar averaged on the noise (annealed mixing). In addition,
we are able to provide some examples of vector fields that produce annealed
mixing in different types of bounded domains, including a randomly driven
smooth vortex on a disc.

5.1. Introduction

In this chapter we are concerned with the transport of a passive scalar θ : D → R under
the action of a divergence-free vector field u : (0,∞) × D → Rd. The problem is posed in
a domain D ⊂ Rd that throughout the whole chapter we will consider to be convex and
bounded, and we will distinguish between the cases when D has boundary and when it
has not. In case ∂D ̸= ∅, the boundary will be sufficiently smooth.

On the one hand we consider the transport equation that defines the time evolution of
the passive scalar, {

∂tθ + u · ∇θ = 0 in (0,∞) × D,
θ(0, ·) = θ0 in D. (5.1)

where notice that the drift term verifies u · ∇θ = ∇ · (uθ) due to the divergence free
assumption on u.

On the other hand we consider the advection-diffusion equation, where the evolution of
the passive scalar is determined by the action of the vector field and the effect of diffusion.
We denote the passive scalar for this problem by θκ. We assume κ > 0 to be the diffusion
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coefficient, and therefore the advection-diffusion equation takes the following form,{
∂tθ

κ + u · ∇θκ = κ∆θκ in (0,∞) × D,
θκ(0, ·) = θ0 in D. (5.2)

If D ⊂ Rd has a boundary, we consider in addition homogeneous Neumann boundary
conditions,

n · ∇θκ = 0 on (0,∞) × ∂D.

This is the only condition for the boundary of D to be consider since we will always
assume that the vector field is always tangent to it, namely u · n = 0 on ∂D.

The main goal of the chapter is the derivation of ergodicity and mixing results for
passive scalars θ and θκ when they are driven by stochastic vector fields that satisfy
certain properties. Moreover, even on a random setting, we want to address these
problems from a purely analytical perspective.

Mixing of passive scalars has been a topic of great interests for the community in recent
years. Due to the very many applications, physicists have been interested in the mixing
problem since decades ago. However, from a more rigorous or mathematical perspective,
the mixing problem has gained more interest only recently due to a result on the cost
of rearrangements by Bressan, [19]. In this work, the author introduces the concept of
geometric mixing scale and states a conjecture that has only been partially solved yet in
[29]. Bressan’s work opened the door to the geometrical study of the mixing properties of
vector fields, and shortly after a functional analytical perspective of the mixing problem
was introduced in [38, 63]. In those works, the authors consider the decay of a negative
Sobolev norm as a measure of the degree of mixedness, the so-called functional mixing
scale, see Section 2.4 for more information about the mixing problem. The latter is
precisely the notion that we want to consider here.

Let θ be a solution to the transport equation (5.1) or (5.2). We say that the vector
field u mixes the passive scalar if

∥θ(t)∥Ḣ−s(D) → 0 as t → ∞

for some s > 0. Along the chapter we will use the particular case s = 1 as a measure of
mixing since the Ḣ−1−norm scales like [Length] (in general the Ḣ−s−norm scales like
[Length]s). This observation comes from the fact that we define the negative Sobolev
norms via

∥f∥2
Ḣ−s(D) =

∑
k>0

λ−s⟨ϕk, f⟩2,
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where {ϕk}k>0 is an orthonormal basis for mean free functions in L2(D) given by the
Neumann laplacian, and λk are the corresponding eigenvalues. See Section 2.4 for further
details.

In the literature there are already a number of examples of vector fields that mix any
initial configuration in L∞ ∩Hs with s > 0. If one considers deterministic vector fields
that are smooth, or at least sufficiently regular to have well-posedness of the transport
equation (5.1), then it is known that these cannot mix faster than exponential [29, 54, 82].
However there are some well-known examples of vector fields for which solutions to (5.1)
satisfy

∥θ(t)∥Ḣ−1(D) ≲ ∥θ0∥H1(D)e
−γt,

for some γ > 0 and all t > 0, see e.g. [1, 40, 96]. There are in addition important
examples of vector fields that are known to mix polynomially in time but not faster, e.g.
[26, 30]. This is particularly relevant for our purposes because vector fields like steady
point vortices or shear flows in a deterministic setting fall into the class of polynomial
mixers.

For random vector fields, the business of (almost-sure) mixing has been very recently
addressed by the ground-breaking work of Bedrossian, Blumenthal and Punshon-Smith,
[6, 7, 8, 9]. They designed a program about Lagrangian chaos, exponential mixing and
enhanced dissipation with vector fields u that are solution to a stochastically forced
version of Navier-Stokes. Their methods already had applications for alternating shear
flows with random phase or random durations [12, 27]. All these results are based on
a dynamical perspective of the transport equation, where the estimates are derived in
terms of stochastic particle trajectories and using methods from the theory of Markov
processes and random dynamical systems.

In this work we introduce a class of vector fields that are defined on

u : D × D′ → Rd,

where the new domain D′ ⊂ Rd is bounded and may or may not have a boundary. We
denote by y the new variable in D′, and we evaluate the vector field u = u(x, y) on the
second entry with a stochastic process {Yt}t≥0, that will be the source of randomness for
our problem (5.1). Therefore the vector field u = u(x, Yt) depends on (t, x) ∈ (0,∞) × D
and, implicitely also on the noise ω ∈ Ω.

The specific process that we want to consider is described as follows. Fix a filtered
probability space (Ω,F ,Ft,P), then we define the stochastic process {Yt}t≥0 to be a
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reflecting Brownian motion in D′, namely the solution to the SDE{
dYt =

√
2ν dBt − n(Yt) dLt, t > 0,

Y0 = id, (5.3)

where ν > 0, {Bt}t≥0 is a standard Brownian motion in Rd, {Lt}t≥0 is a local time of the
process Yt that is only activated when the process hits the boundary Yt ∈ ∂D′, and n(y)
is the outer normal vector the boundary at position y ∈ ∂D′. As usual, if the domain
D′ does not have a boundary, then Yt = Bt. We elaborate more on reflecting Brownian
motion in subsequent sections and Appendix A.1.

We want to describe the evolution of the passive scalar θ under the action of a vector
field with this specific form. For now let us assume that we only have transport, κ = 0,
so θ solves equation (5.1). We can use the Lagrangian perspective to formulate the
transport equation (5.1) incorporating the definition of u and its dependence on the
Brownian motion. Namely we obtain,{

dXt = u(Xt, Yt) dt in (0,∞) × D,
dYt =

√
2ν dBt − n(Yt)dLt in (0,∞) × D′.

(5.4)

With this equation in mind, we transform it into a PDE that describes the evolution of
the passive scalar

f(t, ·, ·) = E(Xt, Yt)#f0,

by means of Kolmogorov equation or Feynman-Kac formula, see Appendix A.1. Taking
into account that the Brownian motion produces a laplacian operator in the PDE
framework, we obtain that the scalar function f : (0,∞) × D × D′ → R solves the
equation, 

∂tf + u · ∇xf = ν∆yf in (0,∞) × D × D′,

ny · ∇yf = 0 on (0,∞) × D × ∂D′,

f(0, ·, ·) = f0 in D × D′.

(5.5)

Since we are interested in the problem for the marginal θ defined in D, we assume
an initial configuration for f of the form f0 = θ0 ⊗ ρ, where θ0 is the initial datum for
the original problem (5.1), and ρ corresponds to the initial law that we impose on the
Brownian motion {Bt}t≥0, i.e. ρ = law Y0.

Notice that in the original problem (5.1), the passive scalar θ depends on the randomness
ω ∈ Ω. However, the rewriting that we performed by using the properties of u yields a
purely deterministic PDE (5.5) and hence we can apply all the very well-known machinery
about long time behaviour of solutions.
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We will assume along the whole chapter that the vector field u and the initial law for
stochastic process {Yt}t≥0 have the following regularity:

u ∈ C2(D × D′), ρ = law Y0 ∈ (P ∩W 1,∞)(D′). (5.6)

Then, we derive results concerning the ergodicity of solution to (5.1) with this random
vector field following a purely analytical perspective, namely we only need to study
the decay of the solutions to equation (5.5). More in detail, the result that we prove
is that if the operator defined in (5.5) is hypocoercive, i.e. if the H1 norm of f decays
exponentially fast, then solutions to the marginal problem (5.1) are exponentially ergodic:
∥Eθ(t)∥L2 → 0 with an exponential rate.

Some important assumption that we need to make on the initial datum θ0 is that it is
mean free. This is not a very restrictive condition since given any θ0, one can always
define θ̃0 = θ0 − −

∫
θ0 dx, and the solution to the transport equation remains invariant.

This is a by-product of the fact that the transport equation conserves mass, as explained
in Section 2.1. In addition, we need assume the some integrability for the initial datum,
so that the hypotheses assumed for θ0 are

θ0 ∈ (L∞ ∩H1)(D), −
∫

D
θ0 dx = 0. (5.7)

These conditions are not very surprising since what are concerned with a mixing problem,
and thus in order to measure the decay of negative Sobolev norms we need to assume
certain Sobolev regularity for the initial datum.

In this regard, the first result that we present here reads as follows.

Theorem 5.1 (Exponential ergodicity). Let the vector field u ∈ C2(D × D′) satisfy the
assumptions (5.6). Let θ0 ∈ H1(D) and ν > 0. If the deterministic solution to (5.5)
satisfies

∥f(t)∥H1(D×D′) ≲ ∥f(0)∥H1(D×D′)e
−βt,

for all t ≥ 0, namely the operator in (5.5) is hypocoercive, then there holds

∥Eθ(t)∥L2(D) ≲ ∥θ0∥H1(D)e
−βt

for all t > 0.

A straightforward consequence of Theorem 5.1is that the vector field is mixing expo-
nentially fast any initial configuration in H1 ∩L∞, after averaging on the noise (annealed
mixing),

∥Eθ(t)∥Ḣ−1(D) ≲ ∥θ0∥H1(D)e
−βt
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for all t > 0. This result might be surprising at first glance since we know equation (5.1)
conserves the L2 norm, however the noise averaging procedure plays a crucial role to
obtain the decay.

In addition, we also provide some examples of ergodic solutions with random vector
fields of the form u = u(·, Yt) in different types of bounded domains. In particular we
consider (non-alternating) shear flows with a random phase in the torus T2, and a vortex
on the unit disc B1(0) that is randomly moving on a subset of the disc B1(0). Both
examples are relevant due to the fact that, as it has been pointed out before, without the
random phase or the random movement both the shear flows and the point vortex can
only mix polynomially fast.

What it is proved in Theorem 5.1 is not yet a result concerning almost-sure exponential
mixing, only ergodicity and thus annealed mixing which is a standard first step needed
for the almost-sure mixing, see [7, 12]. At the present moments the authors conjecture
that a similar result can be obtained for the pointwise mixing studying the hypocoercivity
of analogous operator, but that is a result out of the scope of this thesis.

This chapter is organized as follows: In Section 5.2 an overview of the particle
trajectories perspective for the mixing problem is given. Some basic theory about random
dynamical system and the relevant Markov processes that must be studied for the
mixing problem is introduced. In Section 5.3 the corresponding Eulerian perspective is
introduced, that allows for PDE analysis to be used in order to come up with the mixing
estimates. In addition, in Section 5.3.1 the notion of hypocoercivity is presented, since it
will be relevant for providing examples. Section 5.4 deals with the proof of Theorem 5.1,
and Sections 5.5 and 5.6 showcase examples of vector fields that produce exponential
ergodicity in different types of bounded domains.

5.2. Lagrangian perspective

In this section we will give an overview about the Lagrangian perspective of the transport
problem (5.1) and how ergodicity and mixing results for this equations can be studied
from the particle trajectories viewpoint. This is the preferred perspective in the literature,
as of today, in order to study ergodicity and almost-sure mixing properties of stochastic
vector fields since one can make use of all the well-known theory of random dynamical
systems and ergodicity of Markov processes.

Recall that the so-called Lagrangian perspective of the transport equation deals with
the trajectories of the particles Xt : D → D, which are solutions to the differential
equation

dXt = u(t,Xt) dt, X0 = id .
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This is an ODE if u is deterministic, and a SDE if u is stochastic. In this chapter we are
concerned precisely with the stochastic case.

The study of mixing properties of stochastic vector fields from a Lagrangian perspective
have gained a huge importance in the mathematical community in recent years. In the
seminal work by Bedrossian, Blumenthal and Punshon-Smith, see [6, 7, 8], the authors
consider a vector field that is solution to a stochastically forced Navier-Stokes equation.
After this first ground-breaking contribution there have been other works that follow a
similar strategy to prove ergodicity and mixing with different examples of random vector
fields. Some of the most remarkable have been the contributions by Blumenthal, Coti
Zelati, Gvalani and Cooperman, see [12, 27], where the authors study alternating shear
flows with random phases and random durations.

The general setting concerns a bounded domain D ⊂ Rd and a probability space
(Ω,F ,P). Then, we define a vector field u that depends on time, space and the noise
ω ∈ Ω as in,

u : (0,∞) × D × Ω → Rd

(t, x, ω) 7→ u(t, x, ω).

Since we are interested in divergence free transport, we will always assume that

∇x · u(t, x, w) = 0 for all (t, x, ω) ∈ (0,∞) × D × Ω.

With this stochastic vector field one can construct a stochastic flow, a solution to the
transport SDE that will also depend on the noise ω ∈ Ω via the Itô integral,

Xω
t (x) = x+

∫ t

0
u(s,Xω

s (x), ω) ds.

Thus, the central object of our study will be the stochatic process {Xt}t≥0. A first key
idea is to show that this process defines a random dynamical system in (0,∞) × D × Ω.
For this to hold, some special properties of u are needed. We will elaborate more on
random dynamical systems in Section 5.2.1.

A second key idea is to show that we can define a Markov process {Pt}t≥0 as follows,

Pt(x,A) = P[Xt ∈ A | X0 = x], for t > 0, x ∈ D, A ∈ F . (5.8)

Namely the object Pt(x,A) gives information about the probability for the particle Xt to
be in the Borel set A ⊆ D at time t > 0, provided that initially it was in x ∈ D. This
semigroup is usually referred in the literature as the one-point process.

Markov processes have some properties that are very helpful when dealing with the
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dynamics of the flow, for some basic definitions and key results about Markov processes
and ergodicity of their invariant measures see Section 2.3.

The main argument in this line consists on proving that Pt has a unique invariant
measure in D, the normalized Lebesgue measure, which yields that the Lebesgue measure
is ergodic. If we want to prove exponential or geometric ergodicity we need to use some
extra properties of u, via e.g. Harris’ Theorem, see [52, 67]. In such case we obtain that
for all x ∈ D, the invariant measure is exponentially attracting the measure Pt, namely
there exists α > 0 such that ∣∣∣∣Ptϕ(x) − −

∫
D
ϕ(z) dz

∣∣∣∣ ≲ e−αt

for all ϕ ∈ L∞(D) and all t > 0.
Proving geometric ergodicity for the Markov process (5.8) is already a first interesting

result since it implies annealed mixing, i.e. mixing averaged over all the possible noise
realizations. However if the purpose is to study almost-sure exponential mixing, this is
only the first step. In particular one needs to define two more Markov processes with the
flow {Xt}t≥0. On the one hand we define the projective process

P̂t((x, v), A) = P
[(
Xt(x), (∇xXt)v

|(∇xXt)v|

)
∈ A

]
, (5.9)

where t > 0, (x, v) ∈ D × S1 and A ∈ F ⊗ B(S1). On the other hand we define the
two-point process

P
(2)
t ((x1, x2), A) = P [(Xt(x1), Xt(x2)) ∈ A] , (5.10)

where t > 0, (x1, x2) ∈ D × D \ {(x, x) : x ∈ D} and A ∈ F ⊗ F . This is precisely the
key object to prove exponential mixing, since it is concerned with the the evolution of
two particles that start at different positions in the domain D, and indeed it is proved
in [7] that if P (2)

t has an invariant measure that is geometrically ergodic, then u mixes
exponentially fast every initial datum θ0 ∈ (H1 ∩ L∞)(D) almost surely.

Notice that P (2)
t is defined in a space that is not compact, D × D \ {(x, x) : x ∈ D},

therefore proving geometric ergodicity is more involved. The main strategy consists on:

1. Proving that Pt is geometrically ergodic.

2. Proving that the top Lyapunov exponent is strictly positive, namely

λ+(x, ω) = lim
t→∞

1
t

log |∇xX
ω
t | > 0

for P−a.e. ω ∈ Ω and a.e. x ∈ D.
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3. Proving that P̂t is geometrically ergodic.

With these results in hand, the fourth and final step is to prove that P (2)
t is geometrically

ergodic, modulo some weight function V that satisfies certain drift conditions. For further
details regarding this method see [7, 12].

For our specific problem we will consider a vector field u = u(t, x, ω) whose time and
noise dependence are both encoded in a random parameter Y ω

t that solves the SDE
associate to a Brownian motion. If the domain D considered has a boundary, then the
appropriate stochastic process to consider is the reflecting Brownian motion,{

dYt = dBt − n(Yt) dLt, t > 0,
Y0 = id,

where {Bt}t≥0 is a standard Brownian motion in Rd, {Lt}t≥0 is non-decreasing with
L0 = 0, and it holds∫ t

0
|n(Ys)| dLs < ∞, and

∫ t

0
χ{Ys ̸∈∂D′} dLs = 0

where n(y) is the outer unit vector to the boundary of D′ at position y ∈ ∂D′. For more
details about the reflecting Brownian motion see Section A.1 in the Appendix.

With this specific choice of randomness we can indeed show that the flow {Xt}t≥0
forms a random dynamical system over some suitable metric dynamical system. We
elaborate on that in the next Section.

5.2.1. Random dynamical systems

In this section we will give details on how to understand the flow {Xt}t≥0 produced
by the vector field u as a random dynamical system. As we exposed before, fixing a
canonical filtered probability space (Ω,F ,P), we want to consider a reflecting Brownian
motion in D′,

dYt =
√

2ν dBt − n(Yt) dLt, Y0 = id . (5.11)

Then we define a random vector field u(x, Y ω
t ) on a domain D that depends on the

position x ∈ D, and such that it has all the time and noise dependence encoded on the
process Y ω

t . With this stochastic vector field we consider the transport equation (5.1), or
in Lagrangian form,

dXt = u(Xt, Yt) dt, X0 = id . (5.12)
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This is a random flow whose randomness source is encoded on the Yt−dependence of u.
Therefore we can look at the flow {Xt}t≥0 as a mapping

X : (0,∞) × Ω × D × D′ → D
(t, ω, x, y) 7→ Xω,y

t (x),

defined, via Itô integral, by

Xω,y
t (x) = x+

∫ t

0
u(Xω,y

s (x), Y ω
s (y)) ds.

Mostly in this chapter we will omit the superscripts ω, y in order to have a better notation,
but for this section is more convenient keeping track of them explicitly.

The main purpose of the section is to prove that this mapping defines indeed a random
dynamical system over a suitable metric dynamical system. First of all let us define what
is a random dynamical system, for further details see the monograph [5].

Definition 5.1. Consider a probability space (Ω,F ,P) and a mapping σ : (0,∞)×Ω → Ω
such that

1. σt : Ω → Ω is measure preserving, i.e. P = (σt)#P, for every t ≥ 0;

2. σ0 = idΩ; and

3. {σt}t≥0 has the semigroup property, i.e. σt+s = σt ◦ σs for all t, s ≥ 0.

Then (Ω,F ,P, {σt}t≥0) is called a metric dynamical system.

Definition 5.2. A continuous random dynamical system on a measurable space (D,B(D))
over the metric dynamical system (Ω,F ,P, {σt}t≥0) is a mapping

φ : (0,∞) × Ω × D → D
(t, ω, x) 7→ φωt (x),

with the following properties,

1. φ is (B((0,∞)) ⊗ B(D) ⊗ F ,B(D))−measurable;

2. the cocycle property: the mapping φωt : D → D forms a cocycle over {σt}t≥0, i.e.

φω0 = idD, φωt+s(x) = φσt(ω)
s (φωt (x)),

for every s, t ≥ 0 and P−almost all ω ∈ Ω;
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3. for each ω ∈ Ω, the mapping φω : (0,∞) × D → D is continuous.

The first classical result that we should take into account is that the reflecting Brownian
motion {Yt}t≥0 defines a random dynamical system on D′ over the metric dynamical
system (Ω,F ,P, (σt)t≥0). This is a well-known result that, for domains without boundary
can be found for instance in [5, Section 2.3] and it is essentially a consequence of

Bs(ω) +Bt(σsω) = ω(s) + σsω(t) = ω(t+ s) = Bt+s(ω),

where {σt}t≥0 are the standard shift operators on Ω for the Brownian motion, defined as

σtω(s) = ω(s+ t) − ω(s) s, t ≥ 0, ω ∈ Ω.

With this in mind we define the skew-product of the reflecting Brownian motion {Yt}t≥0
and the shift operators. This is the following mapping,

Θ : (0,∞) × Ω × D′ → Ω × D′

(t, ω, y) 7→ (σtω, Y ω
t (y)),

or Θt(ω, y) = (σtω, Y ω
t (y)) for short.

Consider the measurable space (Ω×D,F ⊗B(D′)) and the probability measure P×LebD′

on (Ω × D′,F ⊗ B(D′)), where LebD′ is the normalized Lebesgue measure on D′. Then
we have the following result.

Lemma 5.1.
(
Ω × D′,F ⊗ B(D′),P× LebD′ , {Θt}t≥0

)
defines a metric dynamical system.

Proof. Let us first check that {Θt}t≥0 has the semigroup property. We have that
Θ0(ω, y) = (σ0ω, Y

ω
0 (y)) = (ω, y) for every ω ∈ Ω and y ∈ D′. In addition,

Θt(Θs(ω, y)) = Θt(σsω, Y ω
s (y)) = (σtσsω, Y σsω

t (Y ω
s (y)))

= (σt+sω, Y ω
t+s(y)) = Θt+s(ω, y)

holds for every ω ∈ Ω and y ∈ D′, therefore {Θt}t≥0 defines a semigroup on Ω × D′.
It remains thus to check that P × LebD′ is invariant with respect to Θt, namely

(Θt)#(P × LebD′) = P × LebD′ ∀t ≥ 0,

or equivalently

(σt)#P = P and E[(Xt)#LebD′ ] = LebD′ ∀t ≥ 0.
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Note that P is invariant with respect to σt by construction of the Brownian motion.
We can prove that the Lebesgue measure is invariant under the action of the Brownian
motion since for every f : D′ → R smooth enough with Neumann homogeneous boundary
conditions there holds

d
dtE

∫
D′
f(Yt(y)) dy = E

∫
D′

(
∇f(y) · dYt(y)

dt + ∆f
)

dy =
∫

D
∇f · EdYt(y)

dt dy = 0,

where we made use of Itô formula and the fact that the expectation of the (reflecting)
white noise dYt/dt is zero. ■

With those tools we can prove that the flow {Xt}t≥0 itself forms a random dynamical
system. However it cannot be over the Brownian motion itself or the shift operators
alone, so we need to redefine the vector field as follows,

u(Xt, Yt) = ũ(Xt,Θt),

where the dependence with Yt is thus encoded in Θt. With this notation we arrive to the
main purpose of the section with the following result.

Lemma 5.2. The flow {Xt}t≥0 given by (5.12) forms a random dynamical system over
the metric dynamical system

(
Ω × D′,F ⊗ B(D′),P × LebD′ , {Θt}t≥0

)
.

Proof. It suffices to show the that the flow satisfies the cocycle property over Θt and
we will argue by uniqueness of the ODE (5.12). Let ω ∈ Ω, x ∈ D, y ∈ D′ and s ≥ 0.
Consider the random functions

ξ(t) = Xω,y
t+s(x), η(t) = X

Θs(ω,y)
t (Xω,y

s (x)).

Those functions satisfy the same initial condition ξ(0) = η(0) = Xω,y
s (x), and in addition,

by the definition of the flow (5.12),

ξ′(t) = ∂tX
ω,y
t+s(x) = ũ(Xω,y

t+s(x),Θt+s(ω, y)) = ũ(ξ(t),Θt+s(ω, y))),

η′(t) = ∂tX
Θs(ω,y)
t (Xω,y

s (x)) = ũ(XΘs(ω,y)
t (Xω,y

s (x)),Θt(Θs(ω, y)))
= ũ(η(t),Θt(Θs(ω, y))).

Then by the semigroup property of the the skew-product, Θt+s = Θt ◦ Θs, we get that
η(t) and ξ(t) satisfy the same ODE with the same initial data and thus by uniqueness of
solutions we get that both functions coincide for all t ≥ 0. ■
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Remark 5.1. When it comes to define the RDS, instead of considering the position of
the point vortex we could analogously have thought about a suitable Hilbert space V
of vector fields of the form u = u(x, y) where the coordinate y is of the form Y ω

t and
initially y = Y0. Then we could represent the evolution of such vector field by

U : (0,∞) × Ω × V → V
(t, ω, u0) 7→ Uωt (u0)

and show that this forms a random dynamical system over a suitable metric dynamical
system. However, since we use a specific structure for the stochastic process {Yt}t≥0 (i.e.
the Brownian motion) we decided to define {Θt}t≥0 instead.

Once we have a well defined random dynamical system we can apply the vast the-
ory about these objects, namely Furstenberg-Kesten Theorem, Multiplicative Ergodic
Theorem,... to obtain positivity of the top Lyapunov exponent,

λ+(x, ω) = lim
t→∞

1
t

log |∇xX
ω
t | > 0.

This, together with the geometric ergodicity of the Markov processes before mentioned is
what yields the sought exponential mixing by the vector field u.

The Lagrangian perspective has been proved to be effective and useful when it comes
to deal with type of problems, however in this work we want to introduce a different
perspective, where we do not follow the particle trajectories but look at the overall picture
of the Eulerian perspective.

5.3. Eulerian perspective

The point of view that we want to introduce about the ergodicity and mixing problem is
the so called Eulerian perspective, that puts a focus on the PDE. As explained before,
any flow of the form

dXt = u(t,Xt) dt, X0 = id,

has an analogous PDE respresentation in form of transport equation

∂tθ + u · ∇θ = 0, θ(0, ·) = θ0.

These are related via the method of characteristics, or Feynman-Kac formula in case the
vector field is stochastic.

We want to study analogous properties to what it has been done in the literature
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though the Markov processes Pt, P̂t or P (2)
t but using the passive scalar θ. We can

translate the language of Markov process to passive scalars and solutions to the PDE via

Pt(x, ·) = Eθ(t, ·).

The other Markov processes introduced in the previous Section are more involved to
study and we will give details in a few lines.

In order to proceed with this framework it is certainly very important to consider the
specific structure of the stochastic process {Yt}t≥0, namely the source of our randomness,
so that we can take advantage of it in order to obtain information about the passive
scalar θ. In particular we consider the flow {Xt}t≥0 coupled with {Yt}t≥0,{

dXt = u(Xt, Yt) dt in D,
dYt =

√
2ν dBt − n(Yy) dLt in D′,

(5.13)

with (X0, Y0) = idD×D′ . Then we can construct, via Feynman-Kac or backwards
Kolmogorov, see Section A.1 in the Appendix, an equivalent partial differential equation
where we study the evolution of a passive scalar f : (0,∞) × D × D′ → R. This PDE has
the form 

∂tf + u · ∇xf = ν∆yf in (0,∞) × D × D′,

ny · ∇yf = 0 on (0,∞) × D × ∂D′,

f(0, ·, ·) = f0 in D × D′.

(5.14)

Here we assume ν > 0 to be the diffusion coefficient in the y direction and ny the outer
unit vector to the boundary of ∂D′. The vector field u = u(x, y) is the same as for the
transport problem (5.1), however, now we consider a new variable y ∈ D′ in the second
entry, and we do not evaluate any stochastic process. This implies in particular that the
vector field in (5.14) is autonomous and deterministic.

Therefore, thanks to the specific structure for the randomness in the stochastic transport
problem (5.1) in D, we can write a new PDE that is deterministic in the product space
D × D′ where x ∈ D and y ∈ D′. This is indeed a deterministic advection-diffusion
equation, with the advection in the direction of x and the diffusion in the direction of y.

Our objective here is then to obtain similar results to what it is known through the
Langrangian lens regarding ergodicity and mixing with random vector fields [7, 8, 12],
but now using purely analytical and PDE methods.

The important results in this business concern the decay of solutions to (5.14) in some
suitable norm, thus a reader that is familiar with equations like (5.14) can directly realize
that this is a problem related to the concepts of hypocoercivity and hypoellipticity.

These are concepts that are intrinsically related to parabolic equations such as the
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heat equation or the advection-difussion equation with a divergence-free vector fields.
Let us give a general picture in a more abstract setting. We have an evolution PDE in
terms of an operator L as follows,

∂th+ Lh = 0, h(0, ·) = h0, (5.15)

posed in some domain D. If the domain is bounded one might need to consider some
appropriate boundary conditions if needed. Then operator L is defined on a Hilbert
space to itself, e.g. L : L2 → L2.

To showcase a clarifying example let us consider an operator L : H → H where the
Hilbert space H consists of the L2 function in D with mean zero,

H =
{
f ∈ L2(D) : −

∫
D
f(x)dx = 0

}
.

Then a simple but enlightening example to consider is L = −∆, namely (5.15) is the heat
equation. Therefore we know that if we consider h0 ∈ H, then h(t) ∈ H for all t > 0 and
moreover ∥h(t)∥L2 decays instantaneously and with an exponential rate to zero. When
an operator L has this property we say that is coercive.

There are certain operators for which the Hilbert norm does not decay instantaneously
but it does maybe after some finite time T > 0. Thus, their long time behaviour is as of
a coercive operator even though technically they might not be because for short times
there might be other dominating phenomena. For these type of operator we have the
following concept.

Definition 5.3. Let H be a Hilbert space and consider an operator L : H → H. If there
exist constants λ,C > 0 such that solutions to the equation (5.15) satisfy

∥h(t)∥H ≤ Ce−λt

for all t > 0, then L is called hypocoercive.

Going back to our specific PDE, notice that in (5.14) we have the operator

L1 = u · ∇x − ν∆y

in D × D′. Notice that since ∇x · u = 0, if we had the full diffusion ∆x + ∆y in D × D′

then the situation would be totally analogous to the heat equation and the operator L1
would be coercive. Since we do not have this property we need to work a bit harder to
prove hypocoercivity.

94



Chapter 5. Ergodicity and mixing results with random vector fields

Due to the structure of our specific problem, we want to consider a initial datum for
(5.14) of the form

f(0, x, y) = θ0(x)ρ(y), x ∈ D, y ∈ D′.

Here θ0 is the initial datum of the original passive scalar problem (5.1), and ρ is the
initial law for the (reflecting) Brownian motion driving the vector field. We will assume
that

θ0 ∈ (H1 ∩ L∞)(D), −
∫

D
θ0(x)dx = 0, ρ ∈ (W 1,∞ ∩ P)(D′).

Therefore the operator L1 is defined on the Hilbert space of H1 functions in D × D′ with
mean zero. That is a good definition for the operator L1 since,

• θ0 mean zero and ρ ≥ 0 imply that f0 and thus f(t) is mean zero for all t > 0;

• θ0 ∈ H1(D) and ρ ∈ W 1,∞(D′) imply that f0 ∈ H1(D × D′);

• f0 ∈ H1(D × D′) implies that f(t) ∈ H1(D × D′) for all t > 0.

Remark 5.2 (Integrability of ρ). Regarding the initial law ρ ∈ P(D′) for the process
{Yt}t≥0, we could in principle consider any Radon probability measure, including atomic
measures. Since Yt is a Brownian motion, its law solves a heat equation and thus any
initial datum ρ will be instantaneously smooth. With a singular measure ρ we could
rewrite all the statements of this chapter in terms a new initial time t0 > 0. We just
choose ρ ∈ W 1,∞(D′) in order to avoid this technicality.

At this point we find a double objective: first to study whether hypocoercivity of the
operator L1 implies some of the ergodicity or mixing properties that we know from the
Langrangian perspective, and second find examples of vector fields for which we get
hypocoercivity.

For the first part we find that studying solutions to (5.14), namely the operator L1,
will only be enough to obtain ergodicity. This is to be expected since f(t) is constructed
from solutions to the stochastic passive scalar θ that is in turn related to the one-point
Markov process Pt = Eθ(t, ·). For this reason and in orther to be consisten with the
already existing literature, we will refer to the operator L1 as the one-point operator,
or the operator associated to the one-point problem. Properties of this operator and
examples of vector fields u for which L1 is hypocoercive are provided in Section 5.4.

5.3.1. The hypocoercivity method

In [95], Villani designs an abstract framework to prove that a operators like L1 are
hypocoercive. Given some Hilbert space H that is L2−based and some natural number
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d ≥ 1 consider operators
A : H → Hd, B : H → H.

If we denote A⋆ the adjoint operator of A then it satisfies A⋆ : Hd → H. We assume that
B is antisymmetric, namely B⋆ = −B, and define the operator

L = A⋆A+B.

In Rd, a typical example would be to consider A to be a gradient, and thus A⋆ (minus) a
divergence, which yields a diffusion operator L = −∆. If in addition we include B = u · ∇
with u divergence free, then we obtain an advection-diffusion operator L = u · ∇ − ∆.

Our specific one-point and two-point operators fall under this abstract structure as
well, since AL1 = AL2 =

√
ν∇y have the corresponding gradient structure, and the drift

operators are antisymmetric,

BL1 = u · ∇x, BL2 = u1 · ∇x1 + u2 · ∇x2

because of the divergence-free property of the vector field.
Since it was introduced in [95], the method has been used in many different type of

problems, for instance to obtain enhanced dissipation with similar operators to L1, see
e.g. [10, 28]. Before proceeding with the method, let us clarify some notation. We assume
the operator L is defined in a L2−based Hilbert space H, that usually can be understood
as some sort of weighted H1 space.

• Let ∥ · ∥ be the standard L2 norm and ∥ · ∥H1 the standard H1 norm, namely

∥h∥2
H1 = ∥h∥2 + ∥∇h∥2.

• Let ⟨·, ·⟩ be the standard scalar product in L2, namely ⟨h, h⟩ = ∥h∥2.

Villani’s method consists of defining a new norm, called augmented energy functional
Φ, that is equivalent to the original norm for which one wants to prove the exponential
decay. The advantage of using Φ is that the operator L will be coercive with that norm,
even if it is not with the original norm of H. Thus, when applied to solutions to the
equation ∂th+ Lh = 0, it decays instantaneously.

The H norm and the augmented energy functional typically involve first order derivat-
ives, therefore we say that this method provides a frame to deal with H1−hypocoercivity.
That is one of the main reasons for us to consider initial data θ0, f0, F0 ∈ H1.

Villani designs his augmented energy functional in terms of some commutators from
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the operators A and B. The idea is to consider a first commutator

C1h = [A,B]h = ABh−BAh ∈ Hd for all h ∈ H,

and then proceed iteratively

Ck+1 = [Ck, B], k ≥ 1.

We want to consider as many iterations as needed to obtain a norm that is comparable
to the standard H1 norm. In this respect let us introduce a more refined definition of
coercivity, that is equivalent to the concept mentioned before.

Definition 5.4. We say that an operator C : H → H is coercive if there exists a constant
λ > 0 such that

⟨h,Ch⟩ ≥ λ∥h∥2

for all h ∈ H.

With this information in mind we can proceed to explain the structure of the H
norm and the augmented energy functional. Consider the collection of the N + 1 first
commutators {Ci : 0 ≤ i ≤ N}, where we denote C0 = A.

• We define ∥ · ∥H to be the norm of the Hilbert space H via the commutators

∥h∥2
H = ∥h∥2 +

N∑
i=0

∥Cih∥2.

• We define the augmented energy functional Φ(·) as

Φ(h) = ∥h∥2 +
N∑
i=0

(αi∥Cih∥2 + 2βi⟨Cih,Ci+1⟩),

where αi, βi > 0 for all 0 ≤ i ≤ N and CN+1 = 0.

What Villani proved in [95, Theorem 24] is that under certain assumptions for the
commutators {Ci : 0 ≤ i ≤ N}, there exist appropriate constants αi, βi > 0 for which
∥ · ∥H is equivalent to Φ(·). In addition, if the operator

N∑
i=0

C⋆i Ci is coercive, (5.16)

then we obtain that L is hypocoercive with the H norm.

97



Chapter 5. Ergodicity and mixing results with random vector fields

The main ideas about this result can be understood from the following steps:

1. For any h that satisfies ∂th+ Lh = 0 we prove that there exists ε > 0 such that

d

dt
Φ(h(t)) + ε

N∑
i=0

∥Cih∥2 ≤ 0

2. Condition (5.16) means that

N∑
i=0

⟨h,C⋆i Cih⟩ =
N∑
i=0

∥Cih∥2 ≳ ∥h∥2,

and thus we can write,
d

dt
Φ(h(t)) + ε∥h∥2

H ≲ 0.

Since Φ(·) and ∥ · ∥2
H are equivalent, we use Gronwall’s inequality to obtain the

instantaneous and exponential decay Φ(h(t)) ≤ Φ(h(0))e−εt.

3. Yet again, via the equivalence between Φ(·) and ∥ · ∥2
H we obtain the decay of the

latter, ∥h(t)∥2
H ≲ ∥h0∥2

He
−εt, which might not be instantaneous for this norm but

still exponential.

So far this proves that L is H−hypocoercive. However, for some specific cases, we
can use the particular structure of the commutators C1, . . . , CN to recover the standard
H1 norm from the H norm. This is something that can be easily understood from a
particular example.

Example 5.1. Consider the one-point operator associated to equation (5.14),

L1 = u · ∇x − ν∆y, A =
√
ν∇y, B = u · ∇x.

The zeroth commutator C0 = A already provides half of the derivatives needed for the
standard H1 norm in D × D′. However, if we want to construct from L1 a norm that is
comparable to the standard H1 norm, we need to recover the missing derivatives from
the commutators. Notice that all of them are of the form

Ck = [Ck−1, B] = Mk∇x, Mk ∈ Rd×d, k ≥ 1,

e.g. M1 = ∇yu
T , M2 = ∇yu

T∇xu
T − (u · ∇x)∇yu

T ,... For this particular example we
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define the H norm,

∥h∥2
H = ∥h∥2 + ∥∇yh∥2 +

N∑
i=1

∥Mi∇xh∥2.

One can appreciate that the number N of commutators needed is related to the minimum
number of factors Mi∇x required to span Rd, see Remark 5.3. In addition, if we have a
suitable ellipticity property for the collection of matrices Mi like

N∑
i=1

∥Miξ∥2 ≳ ∥ξ∥2, for all ξ ∈ Rd,

then we can recover the original H1 norm from H, and we obtain hypocoercivity in the
usual H1 sense.

Remark 5.3 (Relation to Hörmander’s hypoellipticity). Conditions to obtain Villani’s
hypocoercivity resemble very much conditions to obtain Hörmander’s hypoellipticity. In
[53], Hörmander considers similar operators

L =
N∑
i=1

A⋆iAi +A0.

He proves that if the operator L has some specific structure, then L is hypoelliptic.
Hypoellipticity in this sense is related to the smoothing properties of the operator L,
namely L is said to be hypoelliptic if any solution to ∂th + Lh = f with f smooth is
smooth, regardless of the regularity of the initial datum. Hörmander’s condition for the
operator L to be hypocoelliptic is the following:

• the collection of commutators

[Ai, Aj ], [[Ai, Aj ], Ak] , [[[Ai, Aj ], Ak] , Al] , . . .

for all i, j, k, l, . . . ∈ {0, . . . , N}, span the the full space RM where the equation is
defined.

Thus, one can see the resemblance between Hörmander’s conditions and the coercivity of
the operator C⋆1C1 + . . . C⋆NCN from Villani’s Theorem.

In Sections 5.5 and 5.6 we use the hypocoercivity method to prove the H1 decays of
the solutions to the equation 5.14 with different examples of vector fields. The augmented
energy functional that we introduce is heavily inspired by Villani’s, but with some suitable
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changes that are more convenient for our specific situation. We do not apply Villani’s
Theorem directly, but we follow similar arguments with a similar augmented energy
functional to obtain our result.

5.4. Ergodicity results: the one-point process

The main purpose of this section is to prove Theorem 5.1 that in the coming sections
will be used to provide examples of vector fields that will produce exponential ergodicity
for solutions to the transport equation (5.1) in two different types of domains.

On the one hand we consider the 2-dimensional torus T2 and shear flows with random
phase, which is an example already known in the literature to produce mixing, see e.g.
[12]. The novelty here is the method, since we follow a Eulerian perspective in order to
show ergodicity and annealed mixing. On the other hand we consider the domain D to
be the unit ball in R2 and D′ to be a ball contained in D with smaller radius. This is
new example since it features a domain with boundary and therefore the derivation of
hypocoercivity if far more involved.

The main assumption in order to obtain the sought ergodicity result is the exponential
decay of solution to a certain PDE. This particular equation is denoted as the one-point
problem (5.5) since in the Lagrangian perspective it features the dynamics of a one
particle trajectory Xt ∈ D starting at x ∈ D. The name is also originated from the
literature, see [6, 7, 8, 12], where the authors define a Markov process

Pt(x,A) = P[Xt ∈ A | X0 = x]

that defines the trajectory of one particle (or one-point). From the PDE perspective this
Markov process corresponds to the expected value of density solution to the transport
problem (5.1), namely

Pt(x, ·) = Eθ(t, x).

In this context we say that the solution θ(t, ·) to (5.1) is ergodic if the associated
Markov process Pt = Eθ(t, ·) decays in time to its average. This decay can occur pointwise
in x ∈ D (see e.g. [12]) or in some suitable norm. Since for the transport problem we
consider our solution to be in H1, it makes sense for us to consider a decay of the L2 in
order to measure ergodicity. This motivates the following definition.

Definition 5.5. Given a probability space (Ω,F ,P) and a domain D ⊂ Rd, we say that
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a time dependent function g = g(t, x, ω) is ergodic if∥∥∥∥Eg(t, ·, ·) − E−
∫

D
g(t, x, ·) dx

∥∥∥∥
L2(D)

→ 0 as t → ∞.

In particular, we say g is exponentially ergodic is there is some constant λ > 0 such that∥∥∥∥Eg(t, ·, ·) − E−
∫

D
g(t, x, ·) dx

∥∥∥∥
L2(D)

≲ e−λt

for all t > 0.

For our particular problem we will always consider initial data that is mean zero for
all t ≥ 0 and all ω ∈ Ω, and therefore we look for results of the type,

∥Eg(t, ·, ·)∥L2(D) ≲ e−λt.

This definition might look slightly surprising when applied to solutions to the transport
equation (5.1), since the L2 is conserved

∥θ(t, ·)∥L2(D) = ∥θ0∥L2(D) for all t ≥ 0.

However this conservation law is not such when dealing with the expectation of θ(t, ·).
In order to see that we can integrate the transport equation in Ω,

∂tEθ + E[u · ∇θ] = 0.

Then, testing with Eθ(t, ·) and integrating in D we obtain

1
2
d

dt
∥Eθ(t, ·)∥2

L2(D) +
∫

D
E[u · ∇θ(t, x)]Eθ(t, x) dx = 0,

and therefore one sees that unless u · ∇θ and θ would be independent for all t > 0 (which
cannot be), the norm ∥Eθ(t, ·)∥L2 is not conserved in time.

Without further ado, we proceed with the proof of Theorem 5.1. For this result we
are assuming that the solution f to the extended problem (5.5) decays exponentially
and then we prove that this yields exponential ergodicity for the marginal θ, namely the
solution to (5.1). The challenging point for the examples given later will be to prove the
decay of the solutions to the extended problem f .

Proof of Theorem 5.1. We are interested in the time evolution of the L2(D) norm of Eθ,
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that we will define by duality

∥Eθ(t, ·)∥2
L2 = sup

∥g∥L2(D)=1

∫
D
Eθ(t, x)g(x) dx.

Then, take some function g ∈ L2(D) with ∥g∥L2(D) = 1 so that we can write∫
D
Eθ(t, x)g(x) dx = E

∫
D
g(x)(Xt)#[θ0(x)] dx = E

∫
D
g(Xt(x))θ0(x) dx.

Now take ρ ∈ P(D′) and the stochastic process {Yt}t≥0 with law (Y0) = ρ. We integrate
everything in D′ with a new variable that we denote by y ∈ D′. Then we have that∫

D
Eθ(t, x)g(x) dx = E

∫∫
D×D′

g(Xt(x))θ0(x)ρ(y) dy

=
∫∫

D×D′
g(x)E [(Xt, Yt)#(θ0 ⊗ ρ)] (x, y) dx dy

=
∫∫

D×D′
g(x)f(t, x, y) dx dy,

where we have used that f(t, x, y) = E [(Xt, Yt)#(θ0 ⊗ ρ)] (x, y). The this function
f(t, x, y) is the solution to the one-point problem (5.5), since {(Xt, Yt)}t≥0 is the coupled
stochastic process (5.4). Now, directly by a Hölder argument we arrive to∫

D
Eθ(t, x)g(x) dx ≤ ∥f(t, ·, ·)∥L2(D×D′)∥g∥L2(D),

but by assumption ∥f(t, ·, ·)∥L2(D×D′) decays exponentially fast, so there yields∫
D
Eθ(t, x)g(x) dx ≲ e−λt

for all g ∈ L2(D) with ∥g∥L2(D) = 1. ■

Some straightforward consequence of the ergodicity is the so called annealed mixing,
or mixing averaged on the noise. We define it as follows.

Definition 5.6. Let (Ω,F ,P) be a probability space and U : (0,∞) × D × Ω → Rd a
random vector field. We say that U produces annealed mixing if the solution to the
transport equation θ(t, ·) with vector field U and initial datum θ0 ∈ H1(D) mean zero
satisfies

∥Eθ(t, ·)∥H−1(D) → 0 as t → ∞.
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Therefore it is easy to see that if θ(t, ·) is ergodic, then there is also annealed mixing
in the sense of Definition 5.6 since

∥Eθ(t, ·)∥H−1(D) = sup
∥ϕ∥H1 =1

∫
D
Eθ(t, x)ϕ(x) dx ≲ ∥Eθ(t, ·)∥L2(D).

In the next sections we will focus on finding examples of random vector fields in
different types of domains for which the H1 norm of solutions to the one-point problem
(5.5) decays exponentially fast. The example here presented are the following:

1. First we consider a bounded domain without boundary, D = T2 and D′ = T2. Here
we will define shear flows with a random phase as in [12, 27], but not alternating
since we need a continuous in time version of the problem.

2. The second example concerns a domain with boundary, namely D = B1(0). In this
domain we consider a smooth version of a point vortex that moves randomly in
a subdomain D′ = Br(0) with r ∈ (0, 1). The random path that the point vortex
follows is a reflecting Brownian motion, and we obtain exponential ergodicity for
any r > 0.

We will do so using the method of hypocoercivity in D × D′ that we explained in the
previous section, but we will derive the explicit coercive augmented energy functional
that yields the corresponding exponential decay. Therefore, for the two examples here
presented, the hypocoercivity result plus Theorem 5.1 yield that solutions to the transport
equations are exponentially ergodic in the sense of Definition 5.5.

5.5. Example 1: Shear flows with random phase

The first example of mixing vector field that we want to consider is the case of a shear
flow in T2 with random phase. Following the notation presented in the previous section,
we define a vector field of the form

u(x, y) =
(

sin(x2 + y1)
sin(x1 + y2)

)
, (5.17)

where x = (x1, x2) ∈ D = T2 and y = (y1, y2) ∈ D′ = T2.
We define the stochastic process (Yt)t≥0 to be an standard Brownian motion in T2 and

evaluate u on its second component with Yt ∈ T2. Then we obtain a non-autonomous
random vector field U(t, x) = u(x, Yt) on T2 and we are in the setting to apply all the
theory we introduce in the previous sections.
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As before, consider a mean zero initial datum θ0 ∈ H1(T2) and an initial law ρ ∈
W 1,∞(T2) for the Brownian motion. We define the following deterministic PDE in
T2 × T2, {

∂tf + u(x, y) · ∇xf = ν∆yf in (0,∞) × T2 × T2,

f(0, ·) = θ0 ⊗ ρ in T2 × T2.
(5.18)

The idea behind this theory is to prove that the H1(T2 × T2) norm of solutions f(t, ·, ·)
to this equation decay exponentially fast in time to f ≡ 0. Thanks to Theorem ??, this
then yields that the random vector field U(t, x) mixes exponentially fast θ0 ∈ H1(T2)
almost-surely.

In order to address the decay of the H1(T2 × T2) norm what we do is studying
hypocoercivity of the operator

L1 = u · ∇x − ν∆y

in T2 × T2. First of all, let us state some of the properties of this vector field, that will
be useful in the hypocoercivity estimate. A straightforward computation yields that

∇yu(x, y) =
(

cos(x2 + y1) 0
0 cos(x1 + y2)

)
,

and therefore there holds

det ∇yu(x, y) = cos(x2 + y1) cos(x1 + y2),

and the matrix norm is

|∇yu(x, y)|2 = tr(∇yu
T∇yu)(x, y) = cos2(x2 + y1) + cos2(x1 + y2).

Then the matrix ∇yu has the following property,

|∇yu
T ξ|2 = ξ · ∇yu∇yu

T ξ ≥ cos2(x2 + y1) cos2(x1 + y2)
cos2(x2 + y1) + cos2(x1 + y2) |ξ|2

for all ξ ∈ R2. In particular,

|∇yu
T ξ|2 ≥ cos2(x2 + y1) cos2(x1 + y2)

2 |ξ|2 = (det ∇yu(x, y))2

2 |ξ|2

for all ξ ∈ R2.
In light of this estimate for the y−derivatives of the vector field, we prove the following
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Hardy-type estimate.

Lemma 5.3 (Hardy estimate). Let u(x, y) be the vector field from (5.17). Then given
any g = g(y), g ∈ H1(T2), there holds

∥g∥2
L2(T2) ≲ ∥ det(∇yu(x, ·))g∥2

L2(T2) + ∥∇yg∥2
L2(T2)

for all x ∈ T2.

Proof. Let us fix x ∈ T2, by translation invariance in x we can consider without loss of
generality x = 0, therefore the estimate we want to prove is∫

T2
|g|2 d(y1, y2) ≲

∫
T2

(cos(y1) cos(y2))2|g|2 d(y1, y2) +
∫
T2

|∇yg|2 d(y1, y2).

First of all let us address the 1−dimensional problem y ∈ T = [0, 2π). We define
η : T → [0, 1] smooth and such that

η(y) =


1 if y ∈

[
π

4 ,
3π
4

]
∪
[5π

4 ,
7π
4

]
,

0 if y ∈
[
0, π8

]
∪
[7π

8 ,
9π
8

]
∪
[15π

8 , 2π
)
.

Then, we can write ∫
T

|g|2 dy =
∫
T
(1 − η)|g|2 dy +

∫
T
η|g|2 dy.

The first addend is straightforwardly controlled by∫
T
(1 − η)|g|2 dy ≲

∫
T
(1 − η)(cos(y))2|g|2 dy ≤

∫
T
(cos(y))2|g|2 dy.

For the second addend we need to make use the splitting∫
T
η|g|2 dy ≲

∫ π

0
η sin(y)|g|2 dy −

∫ 2π

π
η sin(y)|g|2 dy,
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then, by means of integration by parts and Young’s inequality,∫ π

0
η|g|2 dy ≲

∫ π

0
η sin(y)|g|2 dy =

∫ π

0
η′ cos(y)|g|2 dy + 2

∫ π

0
η cos(y)gg′ dy

≲
∫ π

0
| cos(y)||g|2 dy +

∫ π

0
| cos(y)||g||g′| dy

≤
∫ π

0
| cos(y)|2|g|2 dy + 1

4

∫ π

0
|g|2 + 1

2

∫ π

0
| cos(y)|2|g|2 dy + 1

2

∫ π

0
|g′|2 dy,

and analogously for the remaining integral in [π, 2π). All in all, we arrive to the
1−dimensional estimate

∥g∥2
L2(T) ≲ ∥ cos(·)g∥2

L2(T) + ∥g′∥2
L2(T).

For the 2−dimensional case then we can write∫
T2

|g(y1, y2)|2 d(y1, y2) =
∫
T
G(y2) dy2

where, thanks to the estimate for the 1−dimensional problem we have

G(y2) =
∫
T

|g(y1, y2)|2 dy1 ≲
∫
T
(cos(y1))2|g(y1, y2)|2 dy1 +

∫
T

∣∣∣∣∂g(y1, y2)
∂y1

∣∣∣∣2 dy1.

Therefore, by an analogous procedure we can also write
∫
T2

|g(y1, y2)|2 d(y1, y2) ≲
∫
T
(cos(y1))2H(y1) dy1 +

∫
T2

∣∣∣∣∂g(y1, y2)
∂y1

∣∣∣∣2 d(y1, y2)

where, again due to the 1− dimensional estimate we obtain

H(y1) =
∫
T

|g(y1, y2)|2 dy2 ≲
∫
T
(cos(y2))2|g(y1, y2)|2 dy2 +

∫
T

∣∣∣∣∂g(y1, y2)
∂y2

∣∣∣∣2 dy2.

Gathering everything together∫
T2

|g(y1, y2)|2 d(y1, y2) ≲
∫
T2

(cos(y1))2(cos(y2))2|g(y1, y2)|2 d(y1, y2)

+
∫
T2

(∣∣∣∣∂g(y1, y2)
∂y1

∣∣∣∣2 + (cos(y1))2
∣∣∣∣∂g(y1, y2)

∂y2

∣∣∣∣2
)

d(y1, y2),

which implies the desired result. ■
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Remark 5.4. An important consequence of this Hardy estimate is that, if we integrate in
the x variable too and use the properties of the vector field before mentioned, we obtain
the estimate

∥g∥2
L2(T2×T2) ≲ ∥∇yu

T g∥2
L2(T2×T2) + ∥∇yg∥2

L2(T2×T2) (5.19)

for all g ∈ H1(T2 × T2).

With these tools in hand now we can face the hypocoercivity problem for the operator
L1 = u · ∇x − ν∆y with u given by (5.17). From now on and for the sake of a clearer
notation, we will denote the norm in L2(T2 ×T2) simply by ∥·∥. In addition, the standard
scalar product in L2(T2 × T2) will be denoted by ⟨·, ·⟩.

Lemma 5.4. Let f be a solution to (5.18) and consider the augmented energy functional

Φ(f) = 1
2∥f∥2 + α

2 ∥∇yf∥2 + β⟨∇yf,∇yu
T∇xf⟩ + γ

2 ∥∇xf∥2 (5.20)

with α, β, γ > 0. Then there holds

d

dt
Φ(f) = −ν∥∇yf∥2 − αν∥∆yf∥2 − β∥∇yu

T∇xf∥2 − γν∥∇2
xyf∥2

− α⟨∇yf,∇yu
T∇xf⟩ − 2βν⟨∆yf,∇y(u · ∇x) · ∇yf⟩

− βν⟨∆yf,∆yu · ∇xf⟩ − β⟨u · ∇x∇yf,∇yu
T∇xf⟩

+ β⟨∇y(u · ∇x) · ∇yf, u · ∇xf⟩ − γ⟨∇xf,∇xu
T∇xf⟩.

Proof. In order to obtain this result we must consider ∂tf = −u · ∇xf + ν∆yf and
perform the appropriate integrations by parts. First of all we have

1
2
d

dt
∥f∥2 = ⟨f, ∂tf⟩ = −⟨f, u · ∇xf⟩ + ν⟨f,∆yf⟩ = −ν∥∇yf∥2.

For the α terms we can write

1
2
d

dt
∥∇yf∥2 = ⟨∇yf,∇y∂tf⟩ = −⟨∇yf,∇y(u · ∇xf)⟩ + ν⟨∇yf,∇y∆yf⟩

= −⟨∇yf,∇yu
T∇xf⟩ − ⟨∇yf, (u · ∇x)∇yf⟩ − ν∥∆yf∥2

= −⟨∇yf,∇yu
T∇xf⟩ − ν∥∆yf∥2.
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Analogously, for the γ terms we have

1
2
d

dt
∥∇xf∥2 = ⟨∇xf,∇x∂tf⟩ = −⟨∇xf,∇x(u · ∇xf)⟩ + ν⟨∇xf,∇x∆yf⟩

= −⟨∇xf,∇xu
T∇xf⟩ − ⟨∇xf, (u · ∇x)∇xf⟩ − ν∥∇2

xyf∥2

= −⟨∇xf,∇xu
T∇xf⟩ − ν∥∇2

xyf∥2.

Finally, the crossed-terms or β terms can be computed via

d

dt
⟨∇yf,∇yu

T∇xf⟩ = ⟨∇y∂tf,∇yu
T∇xf⟩ + ⟨∇yf,∇yu

T∇x∂tf⟩

= −⟨∇y(u · ∇xf),∇yu
T∇xf⟩ + ν⟨∇y∆yf,∇yu

T∇xf⟩
− ⟨∇yf,∇yu

T∇x(u · ∇xf)⟩ + ν⟨∇yf,∇yu
T∇x∆yf⟩

= −∥∇yu
T∇xf∥2 − ⟨u · ∇x∇yf,∇yu

T∇xf⟩ − ν⟨∆yf,∆yu · ∇xf⟩
− ν⟨∆yf,∇y(u · ∇x) · ∇yf⟩ + ⟨∇y(u · ∇x) · ∇yf, u · ∇xf⟩
− ν⟨∇y(u · ∇x) · ∇yf,∆yf⟩.

Therefore, combining all four computations we arrive to the claim of the Lemma. ■

Lemma 5.5. Let f be a solution to (5.18) and Φ(f) be the augmented energy functional
from (5.20). There exists a choice of α, β, γ > 0 such that:

1. Φ(·) is equivalent to ∥ · ∥2
H1 as a norm in T2 × T2, namely

min
{

1, 1
ν2

}
∥f∥2

H1 ≲ Φ(f) ≲ max
{

1, 1
ν2

}
∥f∥2

H1 .

2. If ν > 1 is sufficiently large, then there exist δ1, δ2 > 0 independent of ν so that
there holds

d

dt
Φ(f) + ν

2∥∇yf∥2 + δ1
ν

∥∇yu
T∇xf∥2 + δ2

ν
∥∇2

xyf∥2 ≤ 0

for all t > 0.

Proof. For the first point, recall the definition of the augmented energy functional (5.20),

Φ(f) = 1
2∥f∥2 + α

2 ∥∇yf∥2 + β⟨∇yf,∇yu
T∇xf⟩ + γ

2 ∥∇xf∥2.
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Notice that since ∥∇yu∥∞ = 1, via Hölder and Young’s inequalities we can write

β|⟨∇yf,∇yu
T∇xf⟩| ≤ β

2

√
α

γ
∥∇yf∥2 + β

2

√
γ

α
∥∇xf∥2,

which in turn implies

Φ(f) ≥ 1
2∥f∥2 + α

2

(
1 − β

√
αγ

)
∥∇yf∥2 + γ

2

(
1 − β

√
αγ

)
∥∇xf∥2,

Φ(f) ≤ 1
2∥f∥2 + α

2

(
1 + β

√
αγ

)
∥∇yf∥2 + γ

2

(
1 + β

√
αγ

)
∥∇xf∥2.

Therefore Φ(·) and ∥ · ∥2
H1 will be equivalent norms provided that 0 < β <

√
αγ. If then

we choose the coefficients to be of the form

α = a, β = b

ν
, γ = c

ν2 ,

where a, b, c > 0 are independent of ν, then the first claim of the Lemma follows. The
reason for this specific choice of coefficients will become apparent within the next lines.

The second statement of the Lemma is a by-product of Hölder and Young’s inequalities.
We start with the α term,

α|⟨∇yf,∇yu
T∇xf⟩| ≤ ν

2∥∇yf∥2 + α2

2ν ∥∇yu
T∇xf∥2.

The γ term has to be treated using Hardy’s inequality (5.19). In order to keep track of
all the exact coefficients we will use Hardy’s inequality in the following form

∥∇xf∥2 ≤ k1∥∇yu
T∇xf∥2 + k2∥∇2

xyf∥2.

Then we can write

γ|⟨∇xf,∇xu
T∇xf⟩| ≤ γ∥∇xf∥2 ≤ γk1∥∇yu

T∇xf∥2 + γk2∥∇2
xyf∥2,

where we have used the property ∥∇xu∥∞ = 1.
We deal with all the β terms in a similar way, making use of Hardy’s inequality (5.19)

when necessary and taking into account that ∥u∥∞, ∥∆yu∥∞ = 1. Then, we obtain

2βν|⟨∆yf,∇y(u · ∇x) · ∇yf⟩| ≤ αν

2 ∥∆yf∥2 + 2β2ν

α
∥∇2

xyf∥2,
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βν|⟨∆yf,∆yu · ∇xf⟩| ≤ αν

4 ∥∆yf∥2 + β2ν

α
∥∇xf∥2

≤ αν

4 ∥∆yf∥2 + β2νk1
α

∥∇yu
T∇xf∥2 + β2νk2

α
∥∇2

xyf∥2,

β|⟨u · ∇x∇yf,∇yu
T∇xf⟩| ≤ β∥∇2

xyf∥2 + β

4 ∥∇yu
T∇xf∥2,

β|⟨∇y(u · ∇x) · ∇yf, u · ∇xf⟩| ≤ β∥∇2
xyf∥2 + β∥∇2

xyf∥∥∇yu
T∇xf∥

≤ 2β∥∇2
xyf∥2 + β

4 ∥∇yu
T∇xf∥2.

Introducing these bounds in the result from Lemma 5.4 we arrive to the stability
estimate

d

dt
Φ(f) + ν

2∥∇yf∥2 + αν

4 ∥∆yf∥2 + I(ν)∥∇yu
T∇xf∥2 + II(ν)∥∇2

xyf∥2 ≤ 0,

where
I(ν) = β

2 − α2k1
2ν − γk1 − β2ν

α
,

II(ν) = (ν − k2)γ − (2 + k2)β2ν

α
− 3β.

Now we need to make sure that I(ν), II(ν) > 0, but first notice that if II(ν) > 0 then
there holds

β2 < αγ,

which is the necessary (and sufficient) condition for Φ to be equivalent to the standard
H1 norm

∥f∥2
H1 = ∥f∥2 + ∥∇yf∥2 + ∥∇xf∥2.

One reasonable ansatz we can make in order to find the appropriate coefficients α, β, γ > 0
is

α = a, β = b

ν
, γ = c

ν2 ,

where a, b, c > 0 are independent of ν. Then the compatibility conditions that we obtain
are the following. On the one hand, for I(ν) > 0 we need

b

2ν >
a2k1
2ν + b2

Aν
+ ck1

ν2 ,
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that can be achieved by choosing

b

2 >
a2k1

2 + b2

a
and ν > 1 sufficiently large.

On the other hand, for II(ν) > 0 we need

c

ν
− ck2

ν2 >
(2 + k2)b2

aν
+ 3b
ν
,

that can be obtained by choosing

c >
(2 + k2)b2

a
+ 3b and ν > 1 sufficiently large.

Therefore we obtain a compatibility region for the coefficients in terms of k1, k2 > 0 of
the form

a ∈
(

0, 1
8k1

)
, b ∈

(
a

4(1 −
√

1 − 8ak1), a4(1 +
√

1 − 8ak1)
)
, c >

(2 + k2)b2

a
+ 3b.

All in all, taking into account that I(ν) scales like β and II(ν) scales like γν, we see that
both coefficients are of the form 1/ν and there yields the second claim of the Lemma. ■

Remark 5.5. Notice that Hardy’s inequality (5.19) and this Lemma together imply that

d

dt
Φ(f) + ν∥∇yf∥2 + 1

ν
∥∇xf∥2 ≲ 0,

where the constant absorbed in ≲ does not depend on ν > 1. Then, since f has mean
zero, we can apply Poincaré inequality to obtain

d

dt
Φ(f) + 1

ν
∥f∥2 + ν∥∇yf∥2 + 1

ν
∥∇xf∥2 ≲ 0,

which in turn implies
d

dt
Φ(f) + 1

ν
∥f∥2

H1(T2×T2) ≲ 0.

All these partial results can be gathered together to obtain full hypocoercivity of the
operator L1 = u · ∇x − ν∆y. This is the main statement of the following Proposition.

Proposition 5.1. Let f(t, ·) be a solution to (5.18) in T2 ×T2 and assume that ν > 1 is
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sufficiently large. Then there holds

∥f(t, ·)∥H1 ≲ ν∥f(0, ·)∥H1e− 1
2ν
t

for all t > 0 and where the constants absorbed in ≲ do not depend on ν.

Proof. This result is an straightforward application of all the partial results studied
before. On the one hand we know that

d

dt
Φ(f) + 1

ν
∥f∥2

H1(T2×T2) ≲ 0.

On the other hand we have

1
ν2 ∥f∥2

H1 ≲ Φ(f) ≲ ∥f∥2
H1 .

Then we can write
d

dt
Φ(f) + 1

ν2 Φ(f) ≲ 0,

so a combination of Gronwall’s inequality and the equivalence between Φ(·) and ∥ · ∥2
H1

implies the claim of the Proposition. ■

5.6. Example 2: Randomly moving vortex on a disc

The next example considered deals with a vector field on a bounded domain with boundary.
In particular we define D = B1(0) ⊂ R2 the ball of radius 1. In this domain we consider
the stream function ψ induced by a vortex located at y ∈ D, that is,{

−∆ψ(·, y) = δy in D,
ψ = 0 on ∂D. (5.21)

Given any fixed value of y, the Poisson problem (5.21) has an explicit solution given by

ψ(x, y) = 1
2π log

( |y||x− y∗|
|x− y|

)
, where y∗ = y

|y|2
.

Notice that, using the definition of y⋆, the term in the numerator can be rewritten as

|y||x− y∗| =
√

1 − 2x · y + |x|2|y|2.

This stream function gives rise to the vector field generated by a singular point vortex
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located at y via the perpendicular gradient, namely

uPV(x, y) = ∇⊥
x ψ(x, y),

which is an unbounded and singular vector field with uPV(·, y) ∈ Lp(D) if and only if
1 ≤ p < 2, and therefore ∇xuPV is not even integrable.

We want to consider a regularized version of this velocity field, so we define

u(x, y) = −d(x, y)2

1 − |y|2
∇⊥
x ψ(x, y),

where
d(x, y) = e−2πψ(x,y)

approximates the Euclidean distance between x and y in a neighborhood of the vortex y,
and regularizes thus the singular velocity field ∇⊥

x ψ induced by the point vortex. The
y dependent prefactor is just introduced for convenience as it will slightly simplify our
later computations. If y is essentially located near the origin, this term is of order one
and has no substantial effect on the velocity. In order to avoid problems when |y| is very
close to 1 we will define the domain of y to be D′ = Br(0) with r ∈ (0, 1).

All in all, the vector field that we consider for this example takes the following form

u(x, y) = y⊥(1 − |x|2) − x⊥(1 − |x|2 + |x− y|2)
2π(1 − 2x · y + |x|2|y|2)2 . (5.22)

Observe that there are a couple of particular cases which are interesting to be studied.
For instance, from (5.22) one can see that when the center of the vortex lies in the center
of the domain, i.e. y = 0, then this vector field is nothing but a rigid rotation,

u(x, 0) = − 1
2πx

⊥.

In addition, it is also remarkable that as expected, one can obtain from (5.22) that the
vector field is always tangential to the boundary ∂D,

u(x, y)
∣∣∣∣
x∈∂D

= − x⊥|x− y|2

2π(1 − 2x · y + |x|2|y|2)2 .

As it has been pointed out, it is evident that if we consider a vortex lying at y = 0 and
we let it rest there, no mixing can be achieved since this vector field produce nothing but
a rigid rotation. The main idea behind this vector field comes thus from considering such
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smooth vortex with center at y ∈ D′ and letting the center moved around the domain
D′ ⊂ D. We do not want to consider any possible trajectory but a reflecting Brownian
motion, hence this example will be referred in the future pages as randomly moving
vortex. In this situation the goal is to study the mixing and ergodic properties of u in
the disc D.

More in detail and recalling the notation introduced before, we want to consider the
stochastic process

dYt =
√

2νdBt − n(Yt)dLt

in (0,∞) × D′ with Y0 = id, where {Bt}t≥0 is a standard Brownian motion in R2, n(·)
is the outer normal unit vector to the boundary ∂D′ and (Lt)t≥0 is a local time of the
process (Yt)t≥0 that is activated if and only if the Brownian path touches the boundary
∂D′. In such case the path is reflected when touching the boundary according to the
normal direction n to ∂D′. At the level of the PDE, this ensures Neumann homogeneous
boundary conditions.

With the vector field u(x, Yt) we consider the transport equation{
∂tθ + u(·, Yt) · ∇θ = 0 in (0,∞) × D,

θ(0, ·) = 0 in D,

that produces a solution θ that depends on the noise realization ω ∈ Ω of u. As before,
we want to study whether the L2 norm of Eθ decays exponentially in time. In order to
do so we define the extended problem

∂tf + u · ∇xf = ν∆yf in (0,∞) × D × D′,

ny · ∇yf = 0 on (0,∞) × D × ∂D′,

f(0, ·, ·) = θ0 ⊗ ρ in D × D′,

(5.23)

and the main goal of this section will be to prove that the H1 norm of the solution to
(5.23) decays exponentially in time. This will yield ergodicity of the vector field u(·, Yt)
in D as proved in Theorem 5.1.

One straightforward outcome of the the definition for this vector field is that it has
the following properties:

1. For any fixed y ∈ D′, the vector field u(x, y) is tangential to ∂D. This is a byproduct
of the fact that the vector field generated by the singular point vortex uPV has the
same property, since the streamlines of u and uPV are in the same position in the
domain D.
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2. The vector field u(x, y) is divergence free in x, namely

∇x · u(x, y) = 0 for all y ∈ D′.

Notice that if we write u(x, y) = V (ψ(x, y), y)∇⊥
x ψ(x, y), then a direct computation

yields
∇x · u = V (ψ, y)∇x · ∇⊥

x ψ + ∂1V (ψ, y)∇xψ · ∇⊥
x ψ = 0.

Just for reference, we would like to highlight that u induces a smooth vorticity
distribution in D, that is,

ω(x, y) = ∇x × u(x, y) = − 1
π

1 − |y|2√
1 − 2x · y + |x|2|y|2

.

Notice that it will never blow up provided that |y| ≤ r < 1. In addition one can observe
that if |y| = 0 there is a uniform vorticity distribution in the whole domain D,

ω(x, 0) = − 1
π
,

which corresponds, as stated before, to a rigid motion of the particles in the the domain
around the origin.

In view of the argument that we follow to prove hypocoercivity, we want to know when
∇yu(x, y) is degenerating. Recall from the previous sections that, for any A ∈ R2×2 we
have the estimate

ξ ·ATAξ = |Aξ|2 ≥ (detA)2

tr(ATA) |ξ|2 for all ξ ∈ R2.

Therefore we are interested in the determinant of ∇yu,

det ∇yu(x, y) = 1 − |x|2

4π
1 + 2x · y − 3|x|2

(1 − 2x · y + |x|2|y|2)4 .

The y gradient of the velocity field degenerates on two lines: on the one hand it degenerates
on the x−boundary |x| = 1, and on the other hand it degenerates on the circle∣∣∣∣x− 1

3y
∣∣∣∣2 = |y|2

9 + 1
3 ,

which lies in the interior of the domain D = B1(0) for any interior (fixed) point y.
Remark 5.6 (The degeneracy at |x| = 1). On a first look, one can hint why |x| = 1 presents
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Figure 5.1.: Contour lines of the stream function ψ when y = (0, 0) and y = (0.5, 0.5).

a degeneracy. The vector field u is always tangential to ∂D by definition, therefore no
matter how we change the position of the center of the vortex y, there will always be
one direction for which points with |x| = 1 will not change their velocity: the normal
direction to the boundary, namely,

∂

∂yi
u(x, y) · x

|x|
= 0 for all x ∈ ∂D and i ∈ {1, 2}.

Notice that this degeneracy is not sharp, if we choose any other direction ξ ∈ R2 not
normal to the boundary, i.e. ξ ·x⊥ ̸= 0, we will get that ∇yu

T ξ ̸= 0 if |x| = 1. In particular
this means that the large eigenvalue of the matrix ∇yu(x, y) does not degenerate when
|x| = 1.

Remark 5.7 (The ring degeneracy). The understanding of the circle degeneracy around
y ∈ D′ is certainly more involved. First of all, it is remarkable that if we consider the
singular point vortex uPV, this degeneracy does not occur. In such case, only when
|x| = 1 the determinant of ∇yuPV vanishes for the same reason that is happens to (5.22).
However, as soon as we consider a smooth version of the point vortex (and there are
several ways to do so), the ring degeneracy pops up.
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Figure 5.2.: Sketch of the ring where the degeneracy occurs for y = (0, 0), y = (0.3, 0),
y = (0.5, 0) and y = (0.9, 0) from left to right.

One can spot, directly from the definition∣∣∣∣x− 1
3y
∣∣∣∣2 = |y|2

9 + 1
3 ,

or from the sketch in Figure 5.2, that the ring will be of smallest radius when y = 0.
Then, as y → ∂D, the radius grows but always stays completely inside D as long as
|y| < 1, that we are imposing by choosing r < 1. It is noticeable as well that if y moves
radially from the origin of the domain, there are exactly two points that will remain in
the ring as y moves.

We want to deal with these degeneracies independently, so first of all let us work with
the ring. From the y ∈ D′ perspective, for any x ∈ D fixed, the degeneracy consists of a
line, namely

1 + 2x · y − 3|x|2 = 0,

that we denote by

ℓ(x) = D′ ∩
{
y =

(3
2 − 1

2|x|2
)
x+ sx⊥ : s ∈ R

}
.
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y ∈ D′

∂D′

ℓ(x)

dring(y)

Figure 5.3.: Sketch of the degeneracy line in D′ for a fixed value of x ∈ D.

We define then the following distance for any coordinate y ∈ D′ to the line ℓ(x) as

dring(y) = dist(y, ℓ(x) ∩ ∂D′)

and we will use this function plus a Poincaré-Hardy type of estimate in order to deal
with this degeneracy of ∇yu

T . On a first comment, notice that

dring(y) ≤ dD′(y) = dist(y, ∂D′) = r2 − |y|2

2r ,

where we are assuming that D′ = Br(0) ⊂ R2, for some r ∈ (0, 1).

Lemma 5.6. Fix x ∈ D and let dring(y) be defined as before, then there holds

∥g∥L2(D′) ≲ ∥d3/2
ringg∥L2(D′) + ∥∇yg∥L2(D′)

for all g = g(y) ∈ H1(D′).

Proof. First of all let us fix x ∈ D, x ̸= 0. In case x = 0 then the line is just a constant
ℓ(0) = 1 and dist(y, ℓ(0)) > 0 since y ∈ Br(0) and r < 1.

Let ε > 0 be small enough. In order to prove this result we need to introduce some
smooth cut-off function ηε : D′ → [0, 1] of the form

ηε(y) =
{

1 if dring(y) < ε,

0 if dring(y) > 2ε,
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and such that
∥∇yηε∥L∞ ≲

1
ε
.

Therefore we can write∫
D′

(1 − ηε)g2dy ≤ 1
ε3

∫
D′

(1 − ηε)d3
ringg

2dy ≤ 1
ε3 ∥d3/2

ringg∥2
L2 .

In addition, since |∇ydring(y)| = 1 for all y ∈ D′ such that y ̸∈ ℓ(x), i.e. for almost all
y ∈ D′, then via integration by parts we obtain,∫

D′
ηεg

2dy =
∫

D′
ηε|∇ydring|2g2dy

= −2
∫

D′
ηεg∇ydring · ∇ygdy −

∫
D′

∇yηε · ∇ydringg
2dringdy

−
∫

D′
ηεg

2dring∆ydringdy

≲
∫

D′
|g||∇yg|dy + 1

ε

∫
D′
g2dringdy +

∫
D′
g2dring|∆ydring|dy

≲ ε

∫
D′
g2dy + 1

ε

∫
D′

|∇yg|2dy + 1
ε3

∫
D′
d2

ringg
2dy,

where we have used Hölder and Young inequalities and the fact that ∆ydring ∈ L∞.
All in all if we write the splitting∫

D′
g2dy =

∫
D′

(1 − ηε)g2dy +
∫

D′
ηεg

2dy,

what we obtain is

(1 − ε)
∫

D′
g2dy ≲

1
ε

∫
D′

|∇yg|2dy + 1
ε3

∫
D′
d2

ringg
2dy.

At this point we can also absorb all the ε > 0 in ≲ since we will not need this parameter
later. Therefore we found that,∫

D′
g2dy ≲

∫
D′

|∇yg|2dy +
∫

D′
d2

ringg
2dy,

which is almost the result we are looking for. Now we only use Young’s inequality once
more in the following way

d2
ring ≤ 1

3ε2d
3
ring + 2ε

3 ,
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which yields ∫
D′
d2

ringg
2dy ≲

1
ε2

∫
D′
d3

ringg
2dy + ε

∫
D′
g2dy

and, after the choice of an appropriate ε coefficient, there yields the desired result. ■

Remark 5.8. Notice that that Lemma 5.6 holds also for vector-valued functions

g = (g1, . . . , gn) ∈ Rn.

In such case, the result holds true for each component gi ∈ R and in particular also in
the following form

∥g∥2
L2(D′) =

n∑
i=1

∥gi∥2
L2(D′) ≲

n∑
i=1

(
∥d3/2

ringgi∥
2
L2(D′) + ∥∇ygi∥2

L2(D′)

)
= ∥d3/2

ringg∥2
L2(D′) + ∥∇yg∥2

L2(D′).

Before proceeding with the relation between this Lemma and structure of ∇yu, let us
address the other type of degeneracy that this matrix has, namely det ∇yu(x, y) = 0 if
|x| = 1 for all y ∈ D′. In order to do so we will stated a Lemma with some key properties
of the vector field u and its relation with the distance function to the boundary in x,

dD(x) = dist(x, ∂D) = 1 − |x|2.

In order to do so let us consider a suitable change of variables for this geometry, namely
we will use polar coordinates in x = (r, ϕ). We define the polar coordinates of the vector
field by

u = urêr + uϕêϕ,

where
ur(x, y) = u(x, y) · x

|x|
, uϕ(x, y) = u(x, y) · x

⊥

|x|
and êr, êϕ are unit vectors in the radial and angular directions from the origin.

Lemma 5.7. Let u be the vector field defined before and let dD(x) = 1 − |x|2 be the
distance to the boundary in x. Then u has the following properties:

1. The radial component of u satisfies

|ur|(x, y) ≲ dD(x),
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for all (x, y) ∈ D × D′. In particular there holds,

|∇n
yur|(x, y), |∂nϕur|(x, y) ≲ dD(x)

for all n ≥ 0 and all (x, y) ∈ D × D′.

2. The 2 × 2 matrix defined by

M = ∇yu
T∇xu

T − (u · ∇x)∇yu
T

has the following property

|M∇xf |(x, y) ≲ dD(x)|∂rf |(x, y) +
∣∣∣∣1r ∂ϕf

∣∣∣∣ (x, y)

for all (x, y) ∈ D × D′.

Proof. For the first result we only need to compute the radial component of u, namely

u(x, y) · x = − (1 − |x|2)(x ∧ y)
2π(1 − 2x · y + |x|2|y|2) ,

where x ∧ y = x1y2 − x2y1. Then just recalling the definition of ur = u · x/|x| we arrive
to the first statement of the Lemma.

In order to see the second result let us treat the two addends separately. On the one
hand, using that |∇yu|,∇xu| ≲ 1, we can write

|∇yu
T∇xu

T∇xf | ≤ |∇yu
T∇xur∂rf | +

∣∣∣∣∇yu
T∇xuϕ

1
r
∂ϕf

∣∣∣∣
≲ |∇yur∂rur∂rf | +

∣∣∣∣1r∇yuϕ∂ϕur∂rf

∣∣∣∣+ ∣∣∣∣1r ∂ϕf
∣∣∣∣

≲ |∇yur||∂rf | + |∂ϕur||∂rf | +
∣∣∣∣1r ∂ϕf

∣∣∣∣ .
Now using the previous observation that |∇yur|, |∂ϕur| ≲ dD(x), there yields

|∇yu
T∇xu

T∇xf | ≲ dD|∂rf | +
∣∣∣∣1r ∂ϕf

∣∣∣∣ .
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On the other hand for the second addend we can write,

|u · ∇x∇yu
T∇xf | ≤ |ur∂r∇yu

T∇xf | +
∣∣∣∣1ruϕ∂ϕ∇yu

T∇xf

∣∣∣∣
≲ |ur||∇xf | +

∣∣∣∣1ruϕ∂ϕ∇yur∂rf

∣∣∣∣+ ∣∣∣∣ 1
r2uϕ∂ϕ∇yuϕ∂ϕf

∣∣∣∣
≲ |ur|

(
|∂rf | +

∣∣∣∣1r ∂ϕf
∣∣∣∣)+ |∂ϕ∇yur||∂rf | +

∣∣∣∣1r ∂ϕf
∣∣∣∣

≲ dD|∂rf | +
∣∣∣∣1r ∂ϕf

∣∣∣∣ ,
and there we arrive to the claim of the Lemma. ■

The matrix M introduced in Lemma 5.7 will be of relevance when proving hypocoer-
civity since it corresponds to the second commutator in Villani’s hypocoercivity method,
see [95].

With all these tools in hand we can derive the following Poincaré-Hardy inequality for
the vector field u that will be a key element in order to obtain the sought hypocoercivity.

Proposition 5.2 (Poincaré-Hardy). Let u be the vector field defined above and let dD′(y)
and dD(x) be the distances to the boundary ∂D′ and ∂D respectively. Then, there holds

∥dD∂rf∥2
L2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

L2
≲ ∥

√
dD′∇yu

T∇xf∥2
L2 + ∥dD∂r∇yf∥2

L2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2

L2

for all f ∈ H1(D × D′).

Proof. First of all let us fix some x ∈ D and notice that, as pointed in the Remark,
Lemma 5.6 is also applicable to vector-valued functions. In particular we want to apply
it to the function

g =

 dD∂rf
1
r
∂ϕf


so that we get

∥dD∂rf∥2
L2(D′) +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

L2(D′)
≲
∫

D′
d3

ring

(
d2

D|∂rf |2 +
∣∣∣∣1r ∂ϕf

∣∣∣∣2
)
dy

+ ∥dD∂r∇yf∥2
L2(D′) +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2

L2(D′)
.

We need to work a bit on the first addend in the right hand side, so first of all notice
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that of course
|∇xf |2 = |∂rf |2 +

∣∣∣∣1r ∂ϕf
∣∣∣∣2 ,

and second notice that

∇yu
T∇xf = ∇yur∂rf + 1

r
∇yuϕ∂ϕf.

Now we need to deal with the degeneracies of ∇yu, but notice that thanks to Lemma 5.7
we know that on ∂D, the degeneracy occurs exclusively in the radial component of the
vector field, namely |∇yur| ∼ dD.

On the one hand, in order to deal with the degeneracy coming from the ring we need
to make use of Lemma 5.6 and use a Poincaré-Hardy argument. In particular, far from
∂D there holds

d2
ring|ξ|2 ≲ |∇yu

T ξ|2

for all ξ ∈ R2, where we are using the usual estimate

|∇yu
T ξ|2 = ξ · ∇yu∇yu

T ξ ≥ (det ∇yu)2

tr(∇yu∇yuT ) |ξ|2 ≳ (det ∇yu)2|ξ|2

for all ξ ∈ R2. On the other hand, in order to deal with the degeneracy at ∂D we have
that far from the ring degeneracy and near ∂D, there holds

d2
D|ξ|2 ≲ |∇yu

T ξ|2

for all ξ ∈ R2. Since we are choosing r < 1, the ring and ∂D will not intersect so we can
combine both arguments in the general estimate

d2
ring(x, y)d2

D(x)|ξ|2 ≲ |∇yu
T (x, y)ξ|2

for all ξ ∈ R2 and all (x, y) ∈ D × D′.
Coming back to the estimate that we want to study, we can write

d2
D|∂rf |2 +

∣∣∣∣1r ∂ϕf
∣∣∣∣2 ≲ d2

D|∇xf |2,

and thus∫
D′
d3

ring

(
d2

D|∂rf |2 +
∣∣∣∣1r ∂ϕf

∣∣∣∣2
)
dy ≲

∫
D′
d3

ringd
2
D|∇xf |2dy ≲

∫
D′
dring|∇yu

T ξ|2dy.
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Finally notice that since dring ≤ dD′ , the claim of the Proposition follows. ■

Without further ado we can proceed to study hypocoercivity of the one-point operator
L1 = u · ∇x − ν∆y with Neumann homogeneous boundary conditions in the variable y as
we did for the precious example. The strategy will be as for the shear flows example: we
will define a suitable augmented energy functional Φ(f) that is coercive, namely it decays
instantaneously, and that is equivalent to an appropriate H1 norm. In this case, since we
have to treat the case with boundary and since we have to deal with a degeneracy of the
vector field when x → ∂D, the H1 norm considered will include a weight in the radial
direction of the x gradient, namely it will be as follows,

∥f∥2
H1

b
= ∥f∥2

L2(D×D′) + ∥∇yf∥L2(D×D′) + ∥dD∂rf∥2
L2(D×D′) +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

L2(D×D′)
.

Recall that dD(x) = 1 − |x|2 ≡ 1 − r2 is the distance to the boundary in x ∈ D.
For the sake of a clearer notation, we will simply denote by ∥ · ∥ the L2 norm in D × D′

and analogously we write ⟨·, ·⟩ for the L2 scalar product in D × D′. Then, we have the
following result regarding the augmented energy functional.

Lemma 5.8. Let f be a solution to (5.23) and consider the augmented energy functional

Φ(f) = 1
2∥f∥2 + α

2 ∥∇yf∥2 + β⟨dD′∇yf,∇yu
T∇xf⟩

+ γ

2 ∥dD∂rf∥2 + γ

2

∥∥∥∥1
r
∂ϕf

∥∥∥∥2 (5.24)

with α, β, γ > 0. Then there holds

d

dt
Φ(f) = −ν∥∇yf∥2 − αν∥∆yf∥2 − β∥

√
dD′∇yu

T∇xf∥2 − γν∥dD∂r∇2
yf∥2

− γν

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
− α⟨∇yf,∇yu

T∇xf⟩ − γ⟨d2
D∂rf, ∂ru · ∇xf⟩

− γ

2 ⟨u · ∇xd
2
D∂rf, ∂rf⟩ − γ⟨1

r
∂ϕf,

1
r
∂ϕu · ∇xf⟩ − γ

2 ⟨u · ∇x
1
r2∂ϕf, ∂ϕf⟩

− β⟨dD′∇yf,M∇xf⟩ − 2βν⟨dD′∆yf,∇y(u · ∇x) · ∇yf⟩
− βν⟨dD′∆yf,∆yu · ∇xf⟩ − βν⟨∇ydD′∆yf,∇yu

T∇xf⟩,

where M = ∇yu
T∇xu

T − (u · ∇x)∇yu
T is the matrix defined in Lemma 5.7.

Proof. Following a similar procedure to Lemma 5.4 we will take time derivatives in each
addend from the definition of Φ(f) and use the fact that f is a solution to (5.23). First
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of all,
1
2
d

dt
∥f∥2 = ⟨f, ∂tf⟩ = −⟨f, u · ∇xf⟩ + ν⟨f,∆yf⟩ = −ν∥∇yf∥2,

after integration by parts and using that ∇x · u = 0. Analogously for the α term we have,

1
2
d

dt
∥∇yf∥2 = ⟨∇yf,∇y∂tf⟩

= −⟨∇yf, u · ∇x∇yf⟩ − ⟨∇yf,∇yu
T∇xf⟩ + ν⟨∇yf,∆y∇yf⟩

= −ν∥∆yf∥2 − ⟨∇yf,∇yu
T∇xf⟩,

where we use the fact that ny · ∇yf = 0 for all x ∈ D and all y ∈ D′. For the γ terms we
argue in a similar way,

1
2
d

dt
∥dD∂rf∥2 = ⟨d2

D∂rf, ∂r∂tf⟩

= −⟨d2
D∂rf, u · ∇x∂rf⟩ − ⟨d2

D∂rf, ∂ru · ∇xf⟩ + ν⟨d2
D∂rf,∆y∂rf⟩

= −ν∥dD∂r∇yf∥2 − ⟨d2
D∂rf, ∂ru · ∇xf⟩ + 1

2⟨u · ∇xd
2
D∂rf, ∂rf⟩,

1
2
d

dt

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
= ⟨ 1

r2∂ϕf, ∂ϕ∂tf⟩

= −⟨ 1
r2∂ϕf, u · ∇x∂ϕf⟩ − ⟨ 1

r2∂ϕf, ∂ϕu · ∇xf⟩ + ν⟨ 1
r2∂ϕf,∆y∂ϕf⟩

= −ν
∥∥∥∥1
r
∂r∇yf

∥∥∥∥2
− ⟨ 1

r2∂ϕf, ∂ϕu · ∇xf⟩ + 1
2⟨u · ∇x

1
r2∂ϕf, ∂ϕf⟩.

Finally for the β terms we have the following,

d

dt
⟨dD′∇yf,∇yu

T∇xf⟩ = ⟨dD′∇y∂tf,∇yu
T∇xf⟩ + ⟨dD′∇yf,∇yu

T∇x∂tf⟩

= −⟨dD′∇y(u · ∇xf),∇yu
T∇xf⟩ − ⟨dD′∇yf,∇yu

T∇x(u · ∇xf)⟩
+ ν⟨dD′∇y∆yf,∇yu

T∇xf⟩ + ν⟨dD′∇yf,∇yu
T∇x∆yf⟩

= I +ν II .
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On the one hand the terms without ν can be rearranged as

I = −∥
√
dD′∇yu

T∇xf∥2 − ⟨dD′(u · ∇x)∇yf,∇yu
T∇xf⟩

− ⟨dD′∇yf,∇yu
T∇xu

T∇xf⟩ −
∑
i

⟨dD′∇yf, ui∇yu
T∇x∂xif⟩

= −∥
√
dD′∇yu

T∇xf∥2 + ⟨dD′∇yf, (u · ∇x)∇yu
T∇xf⟩

+
∑
i

⟨dD′∇yf, ui∇yu
T∇x∂xif⟩ − ⟨dD′∇yf,∇yu

T∇xu
T∇xf⟩

−
∑
i

⟨dD′∇yf, ui∇yu
T∇x∂xif⟩

= −∥
√
dD′∇yu

T∇xf∥2 − ⟨dD′∇yf,∇yu
T∇xu

T∇xf⟩
+ ⟨dD′∇yf, (u · ∇x)∇yu

T∇xf⟩
= −∥

√
dD′∇yu

T∇xf∥2 − ⟨dD′∇yf,M∇xf⟩,

where we define M = ∇yu
T∇xu

T − (u · ∇x)∇yu
T as in Lemma 5.7. On the other hand,

for the addends with ν we have,

II = −⟨dD′∆yf,∆yu · ∇xf⟩ − ⟨dD′∆yf,∇y(u · ∇x) · ∇yf⟩
− ⟨∇ydD′∆yf,∇yu

T∇xf⟩ − ⟨dD′∇y(u · ∇x) · ∇yf,∆yf⟩,

where notice that we can perform the integration by parts with ∇y only because the
term dD′ vanishes at D′. All in all, putting all the terms together we arrive to the claim
of the Lemma. ■

Lemma 5.9. Let f be a solution to (5.23) and Φ(f) be the augmented energy functional
from (5.24). There exists a choice of α, β, γ > 0 such that:

1. Φ(·) is equivalent to ∥ · ∥2
H1

b
as a norm in D × D′, namely

min
{

1, 1
ν2

}
∥f∥2

H1
b
≲ Φ(f) ≲ max

{
1, 1
ν2

}
∥f∥2

H1
b
.

2. If ν > 1 is sufficiently large, then there exist δ1, δ2 > 0 independent of ν so that
there holds

d

dt
Φ(f) + ν

2∥∇yf∥2 + δ1
ν

∥
√
dD′∇yu

T∇xf∥2

+ δ2
ν

∥dD∂r∇yf∥2 + δ2
ν

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
≤ 0
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for all t > 0.

Proof. In a similar fashion to the case of the shear flow, we can prove first of all the
equivalence between Φ and ∥ · ∥2

H1
b

via Hölder and Young’s inequalities. Indeed, recalling
the definition of the augmented energy functional,

Φ(f) = 1
2∥f∥2 + α

2 ∥∇yf∥2 + β⟨dD′∇yf,∇yu
T∇xf⟩ + γ

2

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)
,

then, taking into account that dD′ ≤ r, we can write

β|⟨dD′∇yf,∇yu
T∇xf⟩| ≤ βr

2

√
α

γ
∥∇yf∥2 + βr

2

√
γ

α
∥∇yu

T∇xf∥2.

But using the properties of the vector field from Lemma 5.7 we obtain that

∥∇yu
T∇xf∥2 = ∥∇yur∂rf∥2 +

∥∥∥∥1
r

∇yuϕ∂ϕf

∥∥∥∥2
≤ ∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
,

and thus

β|⟨dD′∇yf,∇yu
T∇xf⟩| ≤ βr

2

√
α

γ
∥∇yf∥2 + βr

2

√
γ

α

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)
.

In this way we obtain that the augmented energy functional is bounded by,

Φ(f) ≥ 1
2∥f∥2 + α

2

(
1 − βr

√
αγ

)
∥∇yf∥2 + γ

2

(
1 − βr

√
αγ

)(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)
,

Φ(f) ≤ 1
2∥f∥2 + α

2

(
1 + βr

√
αγ

)
∥∇yf∥2 + γ

2

(
1 + βr

√
αγ

)(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)
,

and therefore Φ(f) and ∥ · ∥2
H1

b
are equivalent provided that βr < √

αγ.
Notice that in order to obtain the condition βr <

√
αγ, we have assumed that

∥∇yu∥∞ ≤ 1 and ∥∇yuϕ∥∞ ≤ 1. In principle, given the explicit definition of our vector
field in (5.22), we should keep track of these constants or define some K > 0 such that
the L∞ norm of all components and derivatives of u is bounded by it. Another option
could be to smuggle K > 0 in in definition of u such that the correct bound holds directly
by definition. We will not do this for the sake of a clearer notation and because nothing
changes in the end, the argument would be exactly the same only keeping track of K.

The second point to study for this Lemma concerns the stability estimate in 2. We
must find a control over all the terms that do not have a sign in Lemma 5.8 with the
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dissipation terms, namely the terms that do have a (correct) sign. We use a combination
of Hölder and Young’s inequalities repeatedly in all these terms. In order to bound
correctly many of the terms we need to make use of the Poincaré-Hardy estimate from
Proposition 5.2. We start with the α term.

α|⟨∇yf,∇yu
T∇xf⟩| ≤ ν

2∥∇yf∥2 + α2

2ν ∥∇yu
T∇xf∥2.

Then, using the properties ∥∇yur∥∞ ≤ dD and ∥∇yuϕ∥∞ ≤ 1 we get

α|⟨∇yf,∇yu
T∇xf⟩| ≤ ν

2∥∇yf∥2 + α2

2ν ∥∇yur∂rf∥2 + α2

2ν

∥∥∥∥1
r

∇yuϕ∂ϕf

∥∥∥∥2

≤ ν

2∥∇yf∥2 + α2

2ν

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)

≤ ν

2∥∇yf∥2

+ α2cPH
2ν

(
∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
.

In the last step we have used Proposition 5.2 with a Poincaré-Hardy constant cPH > 0
instead of ≲ so that we can carefully keep track of all the terms involved. Analogously
for the γ terms we have,

γ|⟨d2
D∂rf, ∂ru · ∇xf⟩| ≤ γ∥dD∂rf∥

(
∥dD∂rf∥ +

∥∥∥∥1
r
∂ϕf

∥∥∥∥)
≤ 3γ

2 ∥dD∂rf∥2 + γ

2

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

≤ 3γcPH
2

(
∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
.

For the next one we must take into account that u · ∇xdD = −4dDu · x = −4dD|x|ur.
Therefore,

γ

2 |⟨u · ∇xd
2
D∂rf, ∂rf⟩| = 2γ|⟨dD|x|ur∂rf, ∂rf⟩| ≤ 2γ∥dD∂rf∥2

≤ 2γcPH
(

∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
,
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where we have used again ∥ur∥∞ ≤ dD.

γ

∣∣∣∣⟨1
r
∂ϕf,

1
r
∂ϕu · ∇xf⟩

∣∣∣∣ ≤ γ

∥∥∥∥1
r
∂ϕf

∥∥∥∥(∥∥∥∥1
r
∂ϕur∂rf

∥∥∥∥+
∥∥∥∥ 1
r2∂ϕuϕ∂ϕf

∥∥∥∥)
≤ γ

∥∥∥∥1
r
∂ϕf

∥∥∥∥(∥dD∂rf∥ +
∥∥∥∥1
r
∂ϕf

∥∥∥∥)
≤ γ

2 ∥dD∂rf∥2 + 3γ
2

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

≤ 3γcPH
2

(
∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
,

where yet again we use the properties of the vector field. The last term with γ is controlled
analogously and taking into account that

u · ∇x
1
r2 = − 2

r3ur and
∥∥∥∥urr

∥∥∥∥
∞

≤ 1.

Hence,

γ

2

∣∣∣∣⟨u · ∇x
1
r2∂ϕf, ∂ϕf⟩

∣∣∣∣ ≤ γ

∥∥∥∥1
r
∂ϕf

∥∥∥∥2

≤ γcPH

(
∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
.

Finally, for the β terms we follow the same philosophy. To begin with, we use yet again
Lemma 5.7 and the properties of the matrix M ,

β|⟨dD′∇yf,M∇xf⟩| ≤ ν

4∥∇yf∥2 + β2r2

ν
∥M∇xf∥2

≤ ν

4∥∇yf∥2 + β2r2cM
ν

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)

≤ ν

4∥∇yf∥2 + β2r2cMcPH
ν

∥
√
dD′∇yu

T∇xf∥2

+ β2r2cMcPH
ν

(
∥dD∂r∇yf∥2 +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
,

where again, in order to be precise with all the constants, we introduce cM > 0 from
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Lemma 5.7 instead of writing ≲. Next in order,

2βν|⟨dD′∆yf,∇y(u · ∇x) · ∇yf⟩| ≤ αν

4 ∥∆yf∥2 + 4β2νr2

α
∥∇y(u · ∇x) · ∇yf∥2

≤ αν

4 ∥∆yf∥2 + 4β2νr2

α
∥∇yur · ∂r∇yf∥2

+ 4β2νr2

α

∥∥∥∥1
r

∇yuϕ · ∂ϕ∇yf

∥∥∥∥2

≤ αν

4 ∥∆yf∥2 + 4β2νr2

α

(
∥dD∂r∇yf∥2 +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)

where again we used that u and all its derivatives are bounded by 1. For the next term
we need to use the properties of u as in Lemma 5.7, namely

∥∆yu · ∇xf∥2 = ∥∆yur∂rf∥2 +
∥∥∥∥1
r

∆yuϕ∂ϕf

∥∥∥∥2
≤ ∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
.

Therefore a direct application of Poincaré-Hardy from Proposition 5.2 gives,

∥∆yu · ∇xf∥2 ≤ cPH

(
∥
√
dD′∇yu

T∇xf∥2 + ∥dD∂r∇yf∥2 +
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
,

so that the next term is controlled by

βν|⟨dD′∆yf,∆yu · ∇xf⟩| ≤ αν

4 ∥∆yf∥2 + β2νr2

α
∥∆yu · ∇xf∥2

≤ αν

4 ∥∆yf∥2 + β2νr2cPH
α

∥
√
dD′∇yu

T∇xf∥2

+ β2νr2cPH
α

(
∥dD∂r∇yf∥2 +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
.

The last term is concerned with the y gradient of dD′ , but this can explicitly computed

∇ydD′ = ∇y

(
r2 − |y|2

r

)
= −2y

r
,

and controlled by ∥∇ydD′∥∞ ≤ 2. Thus, by the same argument as the previous terms we
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get

βν|⟨∇ydD′∆yf,∇yu
T∇xf⟩| ≤ αν

4 ∥∆yf∥2 + 4β2ν

α
∥∇yu

T∇xf∥2

≤ αν

4 ∥∆yf∥2 + 4β2νcPH
α

∥
√
dD′∇yu

T∇xf∥2

+ 4β2νcPH
α

(
∥dD∂r∇yf∥2 +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)
.

All in all, using these estimates in the expression from Lemma 5.8 we get

d

dt
Φ(f) + ν

4∥∇yf∥2 + αν

4 ∥∆yf∥2 + I(ν)∥
√
dD′∇yu

T∇xf∥2

+ II(ν)∥dD∂r∇yf∥2 + III(ν)
∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
≤ 0,

with coefficients

I(ν) = β − α2cPH
2ν − 6γcPH − β2r2cMcPH

ν
− β2ν(r2 + 4)cPH

α
,

II(ν) = III(ν) = γν − α2cPH
2ν − 6γcPH − β2r2cMcPH

ν
− β2ν(5r2 + 4)cPH

α
.

In order to obtain the desired result, we need to choose α, β, γ > 0 such that I(ν), II(ν), II(ν) >
0 and with βr <

√
αγ. So let us make the following ansatz,

α = a, β = b

ν
, γ = c

ν2 .

Then we obtain the following compatibility conditions.

1. The equivalence between Φ and ∥ · ∥2
H1

b
can be achieved by assuming

b2 < ac. (5.25)

2. Positivity of I(ν) can be achieved by assuming

b

ν
>
cPH
ν

(
a2

2 + 5b2

a

)
+ 1
ν2

(
6ccPH + b2r2cMcPH

)
,
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and therefore this holds if

b > cPH

(
a2

2 + 5b2

a

)
(5.26)

and if ν > 0 is big enough.

3. Positivity of II(ν) and III(ν) can be achieved by assuming

c

ν
>
cPH
ν

(
a2

2 + 9b2

a

)
+ 1
ν2

(
6ccPH + b2r2cMcPH

)
,

and therefore this holds if

c > cPH

(
a2

2 + 9b2

a

)
(5.27)

and if ν > 0 is big enough.

Notice that in general condition (5.27) implies (5.25), at least provided that cPH > 1/9,
which can always be assumed. Therefore we obtain a system that is solvable. In particular
we can choose the constants a, b, c > 0 such that

0 < a <
1

10c2
PH

,

a

5cPH

(
1 −

√
1 − 10ac2

PH

)
< b <

a

5cPH

(
1 +

√
1 − 10ac2

PH

)
,

c > cPH

(
a2

2 + 9b2

a

)
.

With these constants a, b, c > 0 and ν > 0 we finally obtain the desired claim of the
Lemma. ■

As in the previous example, we have now in our hands all the needed tools to prove
hypocoercivity of the operator L1 = −u ·∇x+ν∆y and homogeneous Neumann boundary
conditions in D × D′ with this particular vector field u.

Proposition 5.3. Let f(t, ·) be a solution to (5.23) in D × D′ and assume that ν > 1 is
sufficiently large. Then there holds

∥f(t, ·)∥H1
b
≲ ν∥f(0, ·)∥H1

b
e− 1

2ν
t
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for all t > 0 and where the constants absorbed in ≲ do not depend on ν.

Proof. We start using the decay of the augmented energy functional from Lemma 5.9.

d

dt
Φ(f) + ν

2∥∇yf∥2 + δ1
ν

∥
√
dD′∇yu

T∇xf∥2 + δ2
ν

(
∥dD∂r∇yf∥2 +

∥∥∥∥1
r
∂ϕ∇yf

∥∥∥∥2
)

≤ 0,

and together with the Poincaré-Hardy inequality from Proposition 5.2 there yields,

d

dt
Φ(f) + ν

2∥∇yf∥2 + 1
ν

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)

≲ 0.

We need to produce a factor ∥f∥2 in that expression in order to use the equivalence
between Φ and ∥ · ∥2

H1
b
, but now we cannot apply a standard Poincaré inequality because

the norms have a weight. In order to deal with this issue we need to make use of a
suitable weighted Poincaré inequality of the form

∥f∥2 ≲ ∥∇yf∥2 + ∥dD∇xf∥2 ≤ ∥∇yf∥2 + ∥dD∂rf∥2 +
∥∥∥∥1
r
∂ϕf

∥∥∥∥2
,

where we are taking into account that f has mean zero for all t > 0. See Section A.2 on
the Appendix for more details about this weighted Poincaré inequality. Then, we obtain

d

dt
Φ(f) + 1

ν
∥f∥2 + ν∥∇yf∥2 + 1

ν

(
∥dD∂rf∥2 +

∥∥∥∥1
r
∂ϕf

∥∥∥∥2
)

≲ 0.

and thus
d

dt
Φ(f) + 1

ν
∥f∥2

H1
b
≲ 0.

Now we can use the equivalence between Φ and ∥ · ∥2
H1

b
from Lemma 5.9, and since we

are assuming that ν > 1 is big enough, the equivalence result reads

1
ν2 ∥f∥2

H1
b
≲ Φ(f) ≲ ∥f∥2

H1
b
.

Namely we obtain that
d

dt
Φ(f) + 1

ν
Φ(f) ≲ 0,

and via Gronwall and yet again the equivalence from Lemma 5.9,

∥f(t)∥2
H1

b
≲ ν2∥f(0)∥2

H1
b
e− 1

ν
t
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so that there yields the claim of the Proposition. ■

Remark 5.9. Notice that in this example we are dealing with a vortex that moves in a
subset of the domain D = B1(0). This subset is set to be a ball of radius r > 0, but we
have proved that the ergodicity result holds true for all r > 0. Obviously we strongly
use the fact that y moves in a open domain, it cannot be just one point, but what it is
remarkable from here is that if y = 0 then only a rigid rotation occurs. However, if we let
y move in a ball of radius r ≪ 1, something that would be very close to the rigid rotation,
what we obtain thanks to Theorem 5.1 is that ∥Eθ∥L2 decays exponentially fast to 0.

This is not yet a mixing result in the standard sense (pointwise in the noise) but it is
a first step, and it is surprising from a physical perspective since we show that the decay
will happen exponentially fast for any r > 0.
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A. Additional results

A.1. Stochastic Lagrangian flows on domains with boundary

Many of the results considered along this monograph regarding the transport and
advection-diffusion equations deal with the so called Lagrangian representation of the
solution which consists of a perspective that follows the particle trajectories. Recall that
for the transport equation, namely if κ = 0, we have that solutions θ to the PDE,{

∂tθ + u · ∇θ = 0 in (0, T ) × D,
θ(0, ·) = θ0 in D, (A.1)

and the particle trajectories, that are solutions Xt to the ODE,

dXt

dt
= u(t,Xt)dt, X0 = id

are related through the method of characteristics: θ(t, ·) = (Xt)#θ0.
If we let κ > 0, then the particle trajectories stop being a deterministic object due to

the effect of the diffusion. Let θκ be a solution to{
∂tθ

κ + u · ∇θκ = κ∆θκ in (0, T ) × D,
θκ(0, ·) = θκ0 in D, (A.2)

with u smooth. If in addition we let D be a bounded domain with (smooth) boundary,
the Lagrangian representation of the particles trajectories is slightly more involved. Due
to the presence of the Laplacian, the Lagrangian representation will be stochastic.

Hence, we fix a filtered probability space (Ω,F ,Ft,P) on which we define the according
stochastic process. For a domain D having for each x ∈ ∂D a unique normal n(x), it is
well-know (see e.g. [76, Chapter 3.1]) that any smooth solution of (A.2) is intimately
related to the solution to the SDE

dXt = u(t,Xt) ds+
√

2κ dBt − n(Xt) dLt, (A.3)

where {Bt}t≥0 is an Ft-adapted Brownian motion on Rd and {Lt}t≥0 is an Ft-adapted
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local time of the process {Xt}t≥0 at the boundary ∂D, that is a non-decreasing process
with L0 = 0 such that ∫ t

0
dLs ≤ t,

∫ t

0
1Xs ̸∈∂D dLs = 0. (A.4)

The representation is obtained via the Kolmogorov backward equation associated to (A.2),
that is a solution f : [0, t]×D → R of the backward parabolic equation with some terminal
condition g ∈ C2(D) satisfying

∂tf + κ∆f + u · ∇f = 0 in [0, t] × D,
∇f(s, x) · n(x) = 0 for (s, x) ∈ [0, t] × ∂D, (A.5)

f(t, ·) = g in D.

Then, any solution of (A.3) provides a solution to (A.5) via the observable representation

f(s, x) = Es,x[g(X(t))] = E[g(X(t))|X(s) = x] for (s, x) ∈ (0, t) × D. (A.6)

From here we arrive at measure-valued solutions to (A.2) via duality, which we give in
the following definition.

Definition A.1 (Measure-valued solution to (A.2)). A Borel curve θκ = (θκt )t∈[0,T ] ⊂
M(Rd) is a measure-valued solution to the advection-diffusion equation (A.2) provided
that ∫ T

0

∫
D

(κ+ |u(t, ·)|) d|θκt (·)| dt < ∞ (A.7)

and for all f ∈ C1,2([0, T ] × D) ∩ {∂nf ≡ 0 on ∂D} and all 0 ≤ t1 ≤ t2 ≤ T it holds∫
D
f(t2, ·) dθκt2 −

∫
D
f(t1, ·) dθκt1 =

∫ t2

t1

∫
D

(∂t + κ∆ + u · ∇)f(t, x) dθκt (x) dt = 0. (A.8)

By a standard density argument [4, Lemma 8.1.2], there holds that any measure-valued
solution in the sense of Definition A.1 admits a narrowly continuous representative,
coinciding with (θκt )t∈(0,T ) for a.e. t ∈ (0, T ), in the space M(Rd) conserving the mass,
i.e. θκt (D) = θκ0 (D) for all t ∈ (0, T ]. Hence, we can without loss of generality consider
narrowly continuous paths (θκt )t∈(0,T ) ⊂ P(D) solution to the advection-diffusion equation
in the sense of Definition A.1.

For smooth u, we find a unique classical solutions f ∈ C1,2([0, T ]×D) to the system (A.5)
(see [47]) with terminal value g ∈ C2(D). In particular this identifies via (A.8), becoming
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for t1 = 0 and t ∈ (0, T ] the identity∫
D
g(·) dθκt =

∫
D
f(0, ·) dθκ0

a unique family (θκt )t∈[0,T ] ⊆ P(D).
Based on the stochastic representation (A.6), we obtain the pathwise Lagrangian

representation∫
D
g(·) dθκt =

∫
D
E0,x[g(Xt)] dθκ0 = E[g(Xt) | lawX0 = θκ0 ] = Eθκ

0
[g(Xt)]. (A.9)

Remark A.1 (Stochastic Lagrangian flows). For the case of D = Rd, i.e. no reflection, the
Lagrangian representation (A.9) was obtained in [45], for bounded coefficients and in [92]
under the sole integrability condition (A.7). The identification, also called stochastic
Lagrangian flow, is based on martingale solutions to (A.3), which is a weak solution
concept for SDEs going back to [88, 89].

It seems also possible to directly generalize the concept of stochastic Lagrangian flows
on a bounded set with reflecting boundary conditions to measurable vectorfields just
satisfying (A.7). Here, one would use the martingale problem formulation from [90] for
the reflected SDE (A.3) (see also [76, Chapter 3.2]) and do similar approximation steps
as outlined in [92, Appendix A].

A.2. Weighted Poincaré inequalities

When dealing with coercive and hypocoercive properties of operators as we did in Sections
5.5 and 5.6 it is of the utmost importance to have suitable Poincaré inequalities.

One simple example of such situation would be to consider the heat equation. Let
D ⊂ Rd be a nice bounded domain and f be a solution to

∂tf = κ∆f in (0,∞) × D

with homogeneous Neumann boundary condition, n · ∇f = 0 in ∂D. For this equation
we have the standard energy estimate

1
2
d

dt
∥f∥2

L2 + κ∥∇f∥2
L2 = 0,

and if we want to translate this into a exponential decay of the L2 norm, we need to
make use of a Poincaré inequality. In particular, the standard Poincaré inequality for
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bounded domains with smooth boundary reads as follows∥∥∥∥f − −
∫
fdx

∥∥∥∥
L2

≲ ∥∇f∥L2 , (A.10)

that in general can be stated with any Lp norm, see [41] for details.
For the heat equation we also know that if we consider a mean zero initial datum∫

D
f(0, x)dx = 0,

then f(t, ·) will be mean zero for all t ≥ 0. In such case we obtain that ∥f∥L2 ≲ ∥∇f∥L2 ,
or equivalently, the embedding Ḣ1(D) ↪→ L2(D) for functions f with mean zero and
homogeneous Neumann boundary conditions. Assuming this, we obtain that the L2 norm
of solutions to the heat equation decays instantaneously and exponentially in time,

∥f(t, ·)∥L2 ≤ ∥f(0, ·)∥L2e−κt,

for all t ≥ 0.
The type of inequality that we need for the hypocoercivity estimate in Section 5.6 is

more involved since it features a weight in the norm of ∇f . In addition, we need to
assume that D is convex. The weight in particular that we are interested in is a function
distance to the boundary, that we will denote by

dD(x) = dist(x, ∂D) = min{|x− y| : y ∈ ∂D}.

Therefore this function has the property

∥∇dD∥∞ ≲ 1.

There are some very general results in the literature concerning weighted Poincaré
inequalities. For instance let D ⊂ Rd be convex and consider some parameters α ≥ 0,
β ∈ R, 1 ≤ p ≤ q < ∞ such that

1 − d

p
+ d

q
≥ 0, 1 − d+ β

p
+ d+ α

q
≥ 0

then there holds
∥f − av(f, dαD)∥Lq

α
≤ C(α, β, p, q)∥∇f∥Lp

β
,
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where
av(f, dαD) =

(∫
D
dαD(x)dx

)−1 ∫
D
f(x)dαD(x)dx,

and
∥f∥Lr

γ
=
(∫

D
|f(x)|rdγD(x)dx

)1/r
.

See [23] for details about this result. For our case of interest, in Section 5.6, we deal with
a two-dimensional disc d = 2 and hence it would suffice to choose p = q = 2, α = 0 and
β = 2, which precisely yields a weighted version of (A.10),∥∥∥∥f − −

∫
D
fdx

∥∥∥∥
L2(D)

≲ ∥dD∇f∥L2(D).

The result in [23] is rather general and detailed, however, for the sake of completeness
here we will give a proof of the weighted Poincaré inequality that we need to use in
Section (A.10). First let us state a rather elementary result that is convenient to have
for the proof of the main Proposition.

Lemma A.1. Assume D ⊂ Rd is bounded and f ∈ L2(D). Then there holds

inf
c∈R

∫
D

|f(x) − c|2dx =
∫

D

∣∣∣∣f(x) − −
∫

D
f(z)dz

∣∣∣∣2 dx.
Proof. The proof is just a consequence of a simple optimization problem. We consider
the L2 norm of f(x) − c and expand the square,∫

D
|f(x) − c|2dx = ∥f∥2

L2(D) + c2|D| − 2c
∫

D
f(x)dx.

Then if we optimize in c, we find the condition for the optimal c ∈ R,

2coptimal|D| − 2
∫

D
f(x)dx = 0

that yields claim of the Lemma,

coptimal = −
∫

D
f(x)dx.

■

With this result in hand we can directly enunciate the weighted Poincaré inequality
that we use in Section 5.6.
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Proposition A.1 (Weighted Poincaré inequality). Let D ⊂ Rd be a convex, bounded
domain with smooth boundary. Let dD(x) = dist(x, ∂D) be the distance to the boundary,
and let f ∈ H1(D). Then there holds∥∥∥∥f − −

∫
D
fdx

∥∥∥∥
L2(D)

≲ ∥dD∇f∥L2(D).

Proof. Consider ε ∈ (0,diam(D)/4) and let us define a cut-off function ηε ∈ C∞(D) of
the form

ηε(x) =
{

1 if dD(x) ≥ 2ε
0 if dD(x) ≤ ε

such that ∥∇ηε∥∞ ≲
1
ε
.

Before starting with the estimate, let us fix some convenient notation. For any
0 < δ < diam(D), we define

Dδ = {x ∈ D : dist(x, ∂D) > δ} ⊂ D.

Given some number c ∈ R we can write∫
D

|f(x) − c|2dx =
∫

D
ηε(x)|f(x) − c|2dx+

∫
D

(1 − ηε(x))|f(x) − c|2dx.

For the first addend, given that ηε = 0 if dD ≤ ε, we can directly write∫
D
ηε(x)|f(x) − c|2dx ≤

∫
Dε

|f(x) − c|2dx

For the second addend, since we integrate now only near the boundary, we can smuggle
in a factor |∇dD|2 such that∫

D
(1 − ηε(x))|f(x) − c|2dx ≲

∫
D

(1 − ηε(x))|∇dD(x)|2|f(x) − c|2dx,
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and integrating by parts,∫
D

(1 − ηε(x))|∇dD(x)|2|f(x) − c|2dx

= −2
∫

D
(1 − ηε(x))∇f(x) · ∇dD(x)dD(x)|f(x) − c|dx

−
∫

D
(1 − ηε(x))∆dD(x)dD(x)|f(x) − c|2dx

+ 2
∫

D
∇ηε(x) · ∇dD(x)dD(x)|f(x) − c|2dx

= Iε + IIε + IIIε .

We will study these terms separately taking into account that the distance function and
its derivatives are all bounded. On the one hand

Iε ≲
∫

D
d(x)|∇f(x)||f(x) − c|dx

≲
1
ε

∫
D
d(x)2|∇f(x)|2dx+ ε

∫
D

|f(x) − c|2dx,

On the other hand,

IIε ≲
∫

D\D2ε

dD(x)|f(x) − c|2 ≲ ε

∫
D

|f(x) − c|2dx.

Finally, the term involving the derivative of the cut-off function must be split if to regions,
near the boundary and far from the boundary. We do the splitting in terms of the
parameter ε2 as follows,

IIIε ≲
∫

D
dD(x)|∇ηε(x)||f(x) − c|2dx

≲
1
ε

∫
D\Dε2

dD(x)|f(x) − c|2dx+ 1
ε

∫
Dε2

dD(x)|f(x) − c|2dx

≲ ε

∫
D
dD(x)|f(x) − c|2dx+ 1

ε

∫
Dε2

dD(x)|f(x) − c|2dx.

At this point there are only two terms left to be controlled and both have a very similar
structure, namely

1
ε

∫
Dε2

dD(x)|f(x) − c|2dx and
∫

Dε

dD(x)|f(x) − c|2dx.
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Assuming that 0 < ε < 1 is small, there holds that∫
Dε

dD(x)|f(x) − c|2dx ≤
∫

Dε2
dD(x)|f(x) − c|2dx ≤ 1

ε

∫
Dε2

dD(x)|f(x) − c|2dx

and thus it will sufficient to find an appropriate bound for the latter. In order to do so
we will use the standard Poincaré inequality from (A.10) in the domain

Dε2 = {x ∈ D : dist(x, ∂D) < ε2}.

There, by definition, we have that dD(x) > ε2 and thus there yields

1
ε

∫
Dε2

dD(x)|f(x) − c|2dx ≲
1
ε

∫
Dε2

|∇f(x)|2dx ≲
1
ε5

∫
D
dD(x)2|∇f(x)|2dx.

Notice that in order to apply (A.10) in the domain Dε2 we use a specific value of c ∈ R,
in particular we need

c = −
∫

Dε2
f(x)dx.

All in all, putting all the estimates together, we arrive to

(1 − 3ε)
∫

D
|f(x) − c|2dx ≲

1
ε5

∫
D
dD(x)2|∇f(x)|2dx,

with a particular choice of c ∈ R. As a consequence and choosing a suitable value for
ε > 0 small enough, there holds

inf
c∈R

∫
D

|f(x) − c|2dx ≲
∫

D
dD(x)2|∇f(x)|2dx,

and thus the claim of the Proposition follows thanks to Lemma A.1. ■
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